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Abstract

We develop a class of Lagrangian type schemes for solving the Euler equations of compressible gas dynamics both in
the Cartesian and in the cylindrical coordinates. The schemes are based on high order essentially non-oscillatory (ENO)
reconstruction. They are conservative for the density, momentum and total energy, can maintain formal high order
accuracy both in space and time and can achieve at least uniformly second-order accuracy with moving and distorted
Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One
and two-dimensional numerical examples in the Cartesian and cylindrical coordinates are presented to demonstrate the
performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In numerical simulations of multi-dimensional fluid flow, there are two typical choices: a Lagrangian frame-
work, in which the mesh moves with the local fluid velocity, and an Eulerian framework, in which the fluid
flows through a grid fixed in space. More generally, the motion of the grid can also be chosen arbitrarily, this
method is called the Arbitrary Lagrangian–Eulerian method (ALE; cf. [14,2,21,16,25]). Most ALE algorithms
consist of three phases, a Lagrangian phase in which the solution and the grid are updated, a rezoning phase in
which the nodes of the computational grid are moved to a more optimal position and a remapping phase in
which the Lagrangian solution is transferred to the new grid.

In this paper, we focus on computational hydrodynamic methods for the Euler equations where the mesh
moves with the flow velocity. Such methods, which we refer to as Lagrangian type methods, imply the use of
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distorted or non-uniform meshes. Particular examples include the Lagrangian methods, or the ALE methods
which contain a Lagrangian phase.

Pure Lagrangian methods, and certain ALE methods which can capture contact discontinuities sharply (see
e.g. [19]), are widely used in many fields for multi-material flow simulations such as astrophysics and compu-
tational fluid dynamics (CFD). We will only consider single material in this paper, however the pure Lagrang-
ian method and the ALE method based on the HLLC flux have the potential to be applied to multi-material
flows. Comparing with Eulerian methods, Lagrangian type methods avoid or can reduce a source of numerical
error due to the advection terms in the conservation equations. For this reason, Lagrangian type methods are
frequently preferred in one-dimensional computations where mesh distortion plays no role. Even though the
Euler equations are much simpler in the Lagrangian framework as they do not contain the advection terms, in
two or more space dimensions they are actually more difficult to solve since the mesh moves with the fluid and
can easily lose its quality. In the past years, many efforts have been made to develop Lagrangian type methods.
Some algorithms are developed from the non-conservative form of the Euler equations, for example, those
discussed in [23,3–5,18,37]. The other class of Lagrangian type algorithms starts from the conservative form
of the Euler equations which usually can guarantee exact conservation. See for example [2,8,9,7,17,22,34,20]
etc.

Most existing Lagrangian type schemes for the Euler equations have first or at most second-order accuracy.
Among them many Lagrangian schemes of non-conservative form are only first-order accurate, because of a
first-order error due to the non-conservative formulation of the momentum equation. On the other hand,
some of the conservative Lagrangian type schemes apply the linear interpolation strategy to achieve sec-
ond-order accuracy, meanwhile they usually use a flux limiter to control spurious oscillations which leads
to a possible loss of this second-order accuracy at some special points such as smooth extrema and sonic
points.

Essentially non-oscillatory (ENO) schemes, first introduced by Harten and Osher [13] and Harten et al.
[12], can achieve uniformly high order accuracy with sharp, essentially non-oscillatory shock transitions. In
the subsequent years, ENO schemes in the Eulerian formulation have accomplished successful applications
in many fields especially with problems containing both shocks and complicated smooth flow structures,
see for example [29]. Eulerian ENO schemes on unstructured meshes are developed in [1]. However, the
application of the ENO methodology in the Lagrangian formulation does not seem to have been exten-
sively explored.

In this paper, we develop a class of Lagrangian type schemes for solving the Euler equations which are
based on the high order ENO reconstruction both in the Cartesian and in the cylindrical coordinates. The
schemes are conservative for the density, momentum and total energy, can maintain formal high order accu-
racy both in space and time and can achieve at least uniformly second-order accuracy on moving and distorted
Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test
cases. They should also be generalizable to higher than second-order accuracy by using curved meshes, but
this generalization is not carried out in this paper. Several one and two-dimensional numerical examples in
the Cartesian and cylindrical coordinates are presented which demonstrate the good performance of the
schemes both in purely Lagrangian and in ALE calculations.

An outline of the rest of this paper is as follows. In Section 2, we describe the individual steps of the ENO
Lagrangian type scheme in one space dimension. In Section 3, we present one-dimensional numerical results.
In Section 4, we extend the scheme to two space dimensions both in the Cartesian and in the cylindrical coor-
dinates, while in Section 5 two-dimensional numerical examples are given to verify the performance of the
ENO Lagrangian type method. In Section 6 we give concluding remarks.
2. High order ENO conservative Lagrangian type scheme – one space dimension

2.1. The compressible Euler equations in Lagrangian formulation

The Euler equations for unsteady compressible flow in the reference frame of a moving control volume can
be expressed in integral form in the Cartesian coordinates as
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d

dt

Z
XðtÞ

UdXþ
Z

CðtÞ
FdC ¼ 0; ð2:1Þ
where X(t) is the moving control volume enclosed by its boundary C(t). The vector of the conserved variables
U and the flux vector F are given by
U ¼
q

M

E

0
B@

1
CA; F ¼

ðu� _xÞ � nq

ðu� _xÞ � nMþ p � n
ðu� _xÞ � nE þ pu � n

0
B@

1
CA; ð2:2Þ
where q is the density, u is the velocity, M = qu is the momentum, E is the total energy and p is the pressure, _x
is the velocity of the control volume boundary C(t), n denotes the unit outward normal to C(t). The system
(2.1) represents the conservation of mass, momentum and energy.

The set of equations is completed by the addition of an equation of state (EOS) with the following general form
p ¼ pðq; eÞ; ð2:3Þ

where e ¼ E

q � 1
2
juj2 is the specific internal energy. Especially, if we consider the ideal gas, then the equation of

state has a simpler form,
p ¼ ðc� 1Þqe;
where c is a constant representing the ratio of specific heat capacities of the fluid.
This paper focuses on solving the governing Eqs. (2.1) and (2.2) in a Lagrangian framework, in which it is

assumed that _x ¼ u, and the vectors U and F then take the simpler form
U ¼
q

M

E

0
B@

1
CA; F ¼

0

p � n
pu � n

0
B@

1
CA: ð2:4Þ
2.2. The ENO conservative Lagrangian type scheme in one space dimension

Here we develop a conservative Lagrangian type finite volume scheme on a non-staggered mesh. We solve
the conserved variables such as density, momentum and total energy directly. We remark that many Lagrang-
ian type schemes are defined on staggered meshes, where the density and total energy (or internal energy) are
cell-centered and the velocity (or momentum) is vertex centered. However, our computational experiments
indicate that the non-staggered mesh performs better when the momentum rather than the velocity is solved
directly for the momentum equation. In order to save space we will not give the description and results on
staggered meshes.

The spatial domain X is discretized into N computational cells Ii+1/2 = [xi,xi+1] of sizes Dxi+1/2 = xi+1 � xi

with i = 1, . . . ,N. For a given cell Ii+1/2, the location of the cell center is denoted by xi+1/2. The fluid velocity ui

is defined at the vertex of the mesh. All variables except the velocity are stored at the cell center xi+1/2 in the
form of cell averages and this cell is their common control volume. For example, the values of the cell averages
for cell Ii+1/2, denoted by �qiþ1=2, Miþ1=2 and Eiþ1=2, are defined as follows:
�qiþ1=2 ¼
1

Dxiþ1=2

Z
I iþ1=2

qdx; Miþ1=2 ¼
1

Dxiþ1=2

Z
I iþ1=2

Mdx; Eiþ1=2 ¼
1

Dxiþ1=2

Z
I iþ1=2

Edx:
2.2.1. Spatial discretization

We first formulate the semi-discrete finite volume scheme of the governing (2.1) and (2.4) as
d

dt

�qiþ1=2Dxiþ1=2

Miþ1=2Dxiþ1=2

Eiþ1=2Dxiþ1=2

0
B@

1
CA ¼ �

f̂ DðU�iþ1;U
þ
iþ1Þ � f̂ DðU�i ;Uþi Þ

f̂ MðU�iþ1;U
þ
iþ1Þ � f̂ MðU�i ;Uþi Þ

f̂ EðU�iþ1;U
þ
iþ1Þ � f̂ EðU�i ;Uþi Þ

0
BB@

1
CCA ð2:5Þ
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where f̂ D is the numerical flux of mass across the boundary of its control volume Ii+1/2(t), which is consistent
with the physical flux (2.4) in the sense that f̂ DðU;UÞ ¼ 0, f̂ M is the numerical flux of momentum with
f̂ MðU;UÞ ¼ p, and f̂ E is the numerical flux of total energy with f̂ EðU;UÞ ¼ pu. U�i and U�iþ1 represent the left
and right values of U at the cell’s boundary xi and xi+1, respectively.

The first step for establishing the scheme is to determine the fluxes ðf̂ D; f̂ M ; f̂ EÞ, and the first stage of this
step is to identify the values of the primitive variables on each side of the boundary, that is U�i , i = 1, . . . ,N.
The information we have is the cell average values of the conserved variables Uiþ1=2 ¼ ð�qiþ1=2;Miþ1=2;Eiþ1=2Þ,
thus we will have to reconstruct these variables. The simplest reconstruction is to assume that all the variables
are piecewise constant, and equal to the given cell averages for each cell. Then we will have q�i ¼ �qi�1=2,
qþi ¼ �qiþ1=2 etc., where q�i and qþi are the values of density at the left side and the right side of the cell’s bound-
ary xi. This reconstruction is very simple, but is only first-order accurate.

To obtain uniformly second or higher order accurate schemes, in this paper we will use the ENO idea [12] to
reconstruct polynomial functions on each Ii+1/2 by using the information of the cell Ii+1/2 and its neighbors,
such that they are second or higher order accurate approximations to the functions q(x), M(x) and E(x) etc.,
on Ii+1/2. The procedure allows us to obtain arbitrary high order accurate approximation by a proper recon-
struction. For simplicity, in this paper we will only discuss second- and third-order accurate schemes by per-
forming the second and third-order accurate reconstructions. It is easy to extend the procedure to a higher
order reconstruction.

The method of local characteristic decomposition is used in the procedure of the ENO reconstruction. We
refer to [33] for the details of the Roe-type characteristic decomposition that we have used in this paper. As to
the details of how to conservatively reconstruct a polynomial by the ENO idea in each cell, we refer to [12].
The approximate values of each conserved variable at both sides of the cell’s boundary are obtained from its
reconstructed polynomial. Finally, we obtain the values of the density q�i ; q

þ
i , the momentum M�

i ;M
þ
i and the

total energy E�i ;E
þ
i at the left side and the right side of the cell’s boundary xi, respectively.

Next, we will compute the fluxes given the primitive states at each side of a control volume’s boundary.
In this paper, we use the following four typical numerical fluxes:

1) The Godunov flux,
2) The Dukowicz flux,
3) The L–F (Lax–Friedrichs) flux,
4) The HLLC (Harten–Lax-van Leer contact wave) flux.

In the following, we will describe the implementation of the four fluxes in our Lagrangian type schemes. We
have also tested a few other numerical fluxes, such as the Roe flux with an entropy fix. We will however not
present these results to save space.

1. The Godunov flux
To solve the exact Riemann problem at the cell’s boundary xi, we need to know the left and right states at
the boundary. We would like to note that in a Lagrangian scheme the velocity at each side of xi used here
should be the relative fluid velocity, that is, u�i � _xi and uþi � _xi, where u�i ¼ M�

i =q
�
i , uþi ¼ Mþ

i =q
þ
i and _xi is

the cell boundary’s reference moving velocity which can be numerically determined as the Roe averageffiffiffiffi
q�i
p

u�i þ
ffiffiffiffi
qþi

p
uþiffiffiffiffi

q�i
p

þ
ffiffiffiffi
qþi

p . The pressure values at the two sides of the vertex xi are of the form

p�i ¼ ðc� 1Þ½E�i � 1
2
ðM�

i Þ
2
=q�i �, pþi ¼ ðc� 1Þ½Eþi � 1

2
ðMþ

i Þ
2
=qþi � if the ideal gas is considered. With the left

state fq�i ; u�i � _xi; p�i g and the right state fqþi ; uþi � _xi; pþi g at xi, we can now obtain the pressure p�i and
the relative velocity u0i at xi by the Riemann solver. The absolute velocity u�i at xi should be u0i þ _xi. Thus
the fluxes f̂ D, f̂ M and f̂ E in Scheme (2.5) have the following form
f̂ DðU�i ;Uþi Þ ¼ 0

f̂ MðU�i ;Uþi Þ ¼ p�i
f̂ EðU�i ;Uþi Þ ¼ p�i u�i :

8><
>: ð2:6Þ
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2. The Dukowicz flux
The exact Godunov flux needs an iterative procedure to compute, hence the computational complexity and
cost are very high, especially for materials with complex equations of state. Dukowicz [8] developed a sim-
plified and non-iterative approximate Riemann solver to overcome this difficulty.
In this two-shock approximation, the velocity u�i at the cell boundary xi is obtained by solving the following
semi-quadratic equation,
qþi Aþi ju�i � u�minjðu�i � u�minÞ þ q�i A�i ju�i � u�maxjðu�i � u�maxÞ þ pþ;� � p�;� ¼ 0 ð2:7Þ

where
u�min ¼ uþi � cþi =2Aþi ; u�max ¼ u�i þ c�i =2A�i ;

pþ;� ¼ pþi �
1

4
qþi ðcþi Þ

2
=Aþi ; p�;� ¼ p�i �

1

4
q�i ðc�i Þ

2
=A�i :

ð2:8Þ
Here c�i are the left and right values of the sound speed at xi and A± are parameters directly related to the
shock density ratio in the limit of strong shocks. We refer to [8] for the details of the definition of A±. In par-
ticular, for an ideal gas, A�i ¼ ðcþ 1Þ=2.
After we have calculated the velocity u�i , the pressure p�i at xi is easily obtained by the following equation,
p�i ¼
1

2
ðp�;� þ pþ;�Þ þ 1

2
qþi Aþi ju�i � u�minjðu�i � u�minÞ �

1

2
q�i A�i ju�i � u�maxjðu�i � u�maxÞ ð2:9Þ
If p�i is found to be negative which predicts cavitation, then we set p�i ¼ 0.
Substituting u�i and p�i obtained from 2.7, 2.8 and 2.9 into (2.6), we then obtain the fluxes f̂ D, f̂ M and f̂ E.
3. The L–F (Lax–Friedrichs) flux

The Lax–Friedrichs flux is given by
f̂ DðU�i ;Uþi Þ ¼ 1
2
½0� aiðqþi � q�i Þ�

f̂ MðU�i ;Uþi Þ ¼ 1
2
½ðp�i þ pþi Þ � aiðMþ

i �M�
i Þ�

f̂ EðU�i ;Uþi Þ ¼ 1
2
½ðp�i u�i þ pþi uþi Þ � aiðEþi � E�i Þ�

8>><
>>: ð2:10Þ
where ai is taken as an upper bound for the eigenvalues of the Jacobian, here in the Lagrangian formulation,
ai ¼ maxðc�i ; cþi Þ. In order to reduce the numerical viscosity, we perform the local characteristic decomposition
and then choose a different ai for each characteristic field based on the size of the corresponding eigenvalue,
rather than using the same ai for all components as in (2.10).
4. The HLLC flux

We use the version of the HLLC flux described in [19] (see also [36]) for the ALE formulation which is
defined by 8

bFHLLC

i ¼

bF�i ; if S�i > 0;bFðU�i Þ; if S�i 6 0 < SM ;bFðU��i Þ; if SM 6 0 < Sþi ;bFþi ; if Sþi < 0;

>>>><
>>>>:

ð2:11Þ
where 0 1 0 1

bF�i ¼

0

p�i
p�i u�i

B@ CA; bFþi ¼
0

pþi
pþi uþi

B@ CA;

and
U�i ¼
q�i
M�

i

E�i

0
B@

1
CA ¼ 1

S�i � SM

ðS�i � v�i Þq�i
ðS�i � v�i ÞM�

i þ ðp� � p�i Þ
ðS�i � v�i ÞE�i � p�i v�i þ p�SM

0
B@

1
CA; ð2:12Þ
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U��i ¼
q��i
M��

i

E��i

0
B@

1
CA ¼ 1

Sþi � SM

ðSþi � vþi Þqþi
ðSþi � vþi ÞMþ

i þ ðp� � pþi Þ
ðSþi � vþi ÞEþi � pþi vþi þ p�SM

0
B@

1
CA; ð2:13Þ

bFðU�i Þ ¼
SMq�i

SM M�
i þ p�

SM E�i þ ðSM þ _xiÞp�

0
B@

1
CA; F̂ðU��i Þ ¼

SMq��i
SM M��

i þ p�

SM E��i þ ðSM þ _xiÞp�

0
B@

1
CA; ð2:14Þ

p� ¼ q�i ðv�i � S�i Þðv�i � SMÞ þ p�i ; ð2:15Þ

and v�i ¼ u�i � _xi, vþi ¼ uþi � _xi. SM is defined as
SM ¼
qþi vþi ðSþi � vþi Þ � q�i v�i ðS�i � v�i Þ þ p�i � pþi

qþi ðSþi � vþi Þ � q�i ðS�i � v�i Þ
: ð2:16Þ
The signal velocities S�i and Sþi are defined as
S�i ¼ min½v�i � c�i ; ðui � _xiÞ � ci�; Sþi ¼ max½vþi þ cþi ; ðui � _xiÞ þ ci�; ð2:17Þ

where ui and ci are the Roe’s average variables for the velocity and the speed of sound. Since we are consid-
ering the Euler equations in the Lagrangian formulation, here we have _xi ¼ ui.

Each of the above approximate fluxes has its own special features. The Godunov flux solves exactly the Rie-
mann problem at the cell boundary and thus it has the least numerical viscosity among all the first-order upwind
fluxes. In particular, it has no numerical viscosity for the first equation hence it can maintain the mass of each
cell unchanged during the time marching. But it also has the disadvantage of high computational cost. The
Dukowicz flux shares the advantage of the Godunov flux in its zero viscosity for the first equation and small
numerical viscosity for the other equations, but it has a much smaller computational cost. This will be the flux
of our choice for our test cases. The L–F flux has relatively more numerical viscosity, but it has a very simple
form and is more robust in applications. The HLLC flux’s viscosity and cost are between the Godunov flux and
the L–F flux. Since its viscosity vanishes at the Lagrangian contact where p� = p+, v� = v+ = 0, it can resolve
the contact discontinuities sharply within the Lagrangian method. In fact, it has good performance in many
applications. We remark that both the L–F flux and the HLLC flux usually apply the numerical viscosity in
all the equations including the mass equation, causing a possible change in the cell mass during the time evo-
lution. We do, however, find in the numerical tests that the L–F flux and HLLC flux perform well on capturing
the contact discontinuities in our Lagrangian type schemes. For some of the numerical examples, results with
more than one numerical fluxes will be shown and compared. In the actual simulation, especially in the ALE
calculation, we can choose the most suitable flux depending on the requirement of the individual problem.

2.2.2. The determination of the vertex velocity

In the Lagrangian formulation, the grid moves with the fluid velocity which is defined at the vertex, thus we
would need to know the velocity at the vertex to move the grid. Since the velocity is a derived quantity, we
would need to obtain it from the conserved variables. In the following we describe how to determine the ver-
tex’s velocity in our schemes.

For the Godunov flux and the Dukowicz flux, since we solve (exactly or approximately) the Riemann prob-
lem at each vertex as a cell’s boundary, we naturally obtain the velocity by the Riemann solver there.

For the L–F flux and the HLLC flux, the velocity at the cell’s vertex is defined as the Roe’s average of veloc-
ities from both sides,
ui ¼
ffiffiffiffiffiffi
q�i
p

u�i þ
ffiffiffiffiffiffi
qþi

p
uþiffiffiffiffiffiffi

q�i
p þ

ffiffiffiffiffiffi
qþi

p : ð2:18Þ
2.2.3. Time discretization

The time marching for the semi-discrete scheme (2.5) is implemented by a class of TVD Runge–Kutta type
methods [31]. Since the mesh changes with the time advancing in the Lagrangian simulation, the velocity, the
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position of each vertex and the size of each cell need to be updated at each Runge–Kutta stage. Thus the form
of the Runge–Kutta method (we take the third-order case here as an example) in our Lagrangian type schemes
is as follows.

Step 1,
xð1Þi ¼ xn
i þ un

i Dtn; Dxð1Þiþ1=2 ¼ xð1Þiþ1 � xð1Þi ;

U
ð1Þ
iþ1=2Dxð1Þiþ1=2 ¼ Un

iþ1=2Dxn
iþ1=2 þ DtnLðUn

iþ1=2Þ;

Step 2,

xð2Þi ¼
3

4
xn

i þ
1

4
½xð1Þi þ uð1Þi Dtn�; Dxð2Þiþ1=2 ¼ xð2Þiþ1 � xð2Þi ;

U
ð2Þ
iþ1=2Dxð2Þiþ1=2 ¼

3

4
Un

iþ1=2Dxn
iþ1=2 þ

1

4
½Uð1Þiþ1=2Dxð1Þiþ1=2 þ DtnLðUð1Þiþ1=2Þ�;

Step 3,

xnþ1
i ¼ 1

3
xn

i þ
2

3
½xð2Þi þ uð2Þi Dtn�; Dxnþ1

iþ1=2 ¼ xnþ1
iþ1 � xnþ1

i ;

Unþ1
iþ1=2Dxnþ1

iþ1=2 ¼
1

3
Un

iþ1=2Dxn
iþ1=2 þ

2

3
½Uð2Þiþ1=2Dxð2Þiþ1=2 þ DtnLðUð2Þiþ1=2Þ�;

where L is the numerical spatial operator representing the right hand of the scheme (2.5). Here the variables
with the superscripts n and n + 1 represent the values of the corresponding variables at the nth and (n + 1)th
time steps, respectively.

Notice that such Runge–Kutta schemes are simple convex combinations of Euler forward time stepping,
and are hence conservative and stable whenever the Euler forward time stepping is conservative and stable.

Consistently with the order of the spatial discretization in the scheme (2.5), we apply the Runge–Kutta
method of the same order for its time marching.

At the end of this section, we list the explicit form of our first-order Lagrangian type scheme as an example,
�qnþ1
iþ1=2Dxnþ1

iþ1=2 � �qn
iþ1=2Dxn

iþ1=2

Mnþ1
iþ1=2Dxnþ1

iþ1=2 �Mn
iþ1=2Dxn

iþ1=2

Enþ1
iþ1=2Dxnþ1

iþ1=2 � En
iþ1=2Dxn

iþ1=2

0
BB@

1
CCA ¼ �Dtn

f̂ DðUn�
iþ1;U

nþ
iþ1Þ � f̂ DðUn�

i ;Unþ
i Þ

f̂ MðUn�
iþ1;U

nþ
iþ1Þ � f̂ MðUn�

i ;Unþ
i Þ

f̂ EðUn�
iþ1;U

nþ
iþ1Þ � f̂ EðUn�

i ;Unþ
i Þ

0
BB@

1
CCA; ð2:19Þ
where the time step Dtn is determined as
Dtn ¼ kmini¼1;...;N ðDxn
i =cn

i Þ;

with the Courant number k chosen as k = 0.6 in our computation.
3. Numerical results in one space dimension

In this section, we perform some numerical experiments in one space dimension. Purely Lagrangian com-
putation and the ideal gas with c = 1.4 are used to do the following tests unless otherwise stated. We mainly
show the results obtained with the Dukowicz flux but we also show the results with the other fluxes (the Godu-
nov flux, the L–F flux and the HLLC flux) for some test cases for comparison.

3.1. Accuracy test

We first test the accuracy of our schemes on a problem with smooth solutions. The initial condition we
choose for the accuracy test is
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qðx; 0Þ ¼ 2þ sinð2pxÞ; uðx; 0Þ ¼ 1þ 0:1 sinð2pxÞ; pðx; 0Þ ¼ 1; x 2 ½0; 1�;

with a periodic boundary condition. Since we do not know the exact solution, we take the numerical results by
using the fifth-order Eulerian WENO scheme [15] with 8000 grids as the reference ‘‘exact’’ solution. In Tables
1 and 2, we summarize the errors and numerical rate of convergence of our first and second-order Lagrangian
type schemes with the Dukowicz flux at t = 1. The results for the other three fluxes are similar. We can clearly
see from Tables 1 and 2 that the first and second-order schemes achieve the designed order of accuracy, at least
in the L1 norm. However, we also see only second-order accuracy in the results of our third-order scheme. This
is related to an accuracy degeneracy phenomenon of ENO schemes, originally discussed in [26] for Eulerian
formulated schemes. To solve this problem, we use the modified third-order ENO scheme in one-dimension
via the introduction of a biasing factor introduced in [28]. The effect of using this factor in the stencil deter-
mination procedure is to bias towards a linearly stable stencil in smooth regions. Table 3 shows the error re-
sults of the modified ENO scheme with the Dukowicz flux by using a factor of 2, according to the suggestion in
[28]. From this table, we can see the modified ENO scheme recovers the correct third-order accuracy. The fol-
lowing third-order non-oscillatory tests are all performed by the modified third-order ENO scheme, verifying
its essentially non-oscillatory property for problems with discontinuities.
1
of the first-order scheme on 1D meshes using Nx initially uniform cells

Norm Density Order Momentum Order Energy Order

L1 0.11E�1 – 0.15E�1 – 0.29E�1 –
L1 0.34E�1 – 0.46E�1 – 0.78E�1 –
L1 0.55E�2 0.93 0.77E�2 0.94 0.15E�1 0.93
L1 0.19E�1 0.89 0.25E�1 0.86 0.42E�1 0.88
L1 0.28E�2 0.97 0.39E�2 0.97 0.77E�2 0.96
L1 0.97E�2 0.93 0.13E�1 0.92 0.22E�1 0.93
L1 0.14E�2 0.98 0.20E�2 0.98 0.39E�2 0.98
L1 0.50E�2 0.96 0.69E�2 0.95 0.11E�1 0.96

2
of the second-order ENO scheme on 1D meshes using Nx initially uniform cells

Norm Density Order Momentum Order Energy Order

L1 0.16E�2 – 0.22E�2 – 0.43E�2 –
L1 0.52E�2 – 0.10E�1 – 0.17E�1 –
L1 0.48E�3 1.76 0.61E�3 1.86 0.12E�2 1.80
L1 0.25E�2 1.09 0.42E�2 1.25 0.72E�2 1.21
L1 0.13E�3 1.93 0.16E�3 1.94 0.32E�3 1.95
L1 0.93E�3 1.39 0.17E�2 1.32 0.28E�2 1.35
L1 0.34E�4 1.90 0.42E�4 1.91 0.84E�4 1.91
L1 0.35E�3 1.40 0.65E�3 1.38 0.11E�2 1.38

3
of the modified third-order ENO scheme on 1D meshes using Nx initially uniform cells

Norm Density Order Momentum Order Energy Order

L1 0.52E�4 – 0.69E�4 – 0.13E�3 –
L1 0.27E�3 – 0.47E�3 – 0.69E�3 –
L1 0.66E�5 2.99 0.88E�5 2.98 0.17E�4 2.99
L1 0.34E�4 2.96 0.60E�4 2.96 0.88E�4 2.96
L1 0.82E�6 3.00 0.11E�5 3.00 0.21E�5 3.00
L1 0.43E�5 2.99 0.75E�5 2.99 0.11E�4 2.99
L1 0.10E�6 3.00 0.14E�6 3.00 0.26E�6 3.00
L1 0.54E�6 3.00 0.94E�6 3.00 0.14E�5 3.00



3.2. Non-oscillatory tests
Example 3.1. (Lax problem). The first non-oscillatory test is the Riemann problem proposed by Lax. Its initial
condition is as follows
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ðqL; uL; pLÞ ¼ ð0:445; 0:698; 3:528Þ; ðqR; uR; pRÞ ¼ ð0:5; 0; 0:571Þ:

Fig. 1 shows the results performed by the four fluxes introduced in the previous section with 100 initially uni-
form cells at t = 1, respectively.

Comparing with the exact solution, we observe satisfactory non-oscillatory results in the pictures of Fig. 1
with the high resolution for the high order schemes for all these fluxes. If we observe closely, we can find that
the results with the Godunov flux and the Dukowicz flux have slightly better resolution than that with the
HLLC flux, which in turn has better resolution than that with the L–F flux. This is consistent with our
discussion in the previous section on the numerical viscosity of these fluxes.

Since most of the results of the four fluxes in the following tests are similar, we will only show the results of
the Dukowicz flux to save space unless their performance is distinctly different.

Example 3.2. (The Noh problem [24]). The computational domain is [0,1]. The initial state of the fluid is uni-
form with (q,u,e) = (1, � 1,0). The shock is generated in a perfect ideal gas (c = 5/3) by bringing the cold gas
to rest at a rigid wall (x = 0). The analytic post shock density is 4 and the shock speed is 1/3. The left pictures
in Fig. 2 show the computational densities with 200 initially uniform cells against the exact density at t = 0.6.
We observe the typical errors near the left boundary for all orders of accuracy. The shock resolution is better
for the higher order schemes.

Example 3.3. (Two interacting blast waves). The initial data are
q ¼ 1; u ¼ 1; p ¼
103; 0 < x < 0:1

10�2; 0:1 < x < 0:9

102; 0:9 < x < 1:0:

8><
>:
The reflective boundary condition is applied at both x = 0 and x = 1. In the right pictures of Fig. 2, the com-
puted densities with 400 initially uniform cells at the final time t = 0.038 are plotted against the reference ‘‘ex-
act’’ solution, which is computed using a fifth-order Eulerian WENO scheme [15] with 16000 grid points. We
can see the very satisfactory resolution in the results of high order scheme with relatively coarse grids which
demonstrates the advantage of the Lagrangian scheme. Meanwhile, we observe some overshoots in these fig-
ures and in some examples later. Apparently such overshoots are caused by the Lagrangian framework rather
than by the high order ENO reconstruction, since they are already present for the first-order scheme which
does not involve any ENO reconstruction.

Example 3.4. (Leblanc shock tube problem). In this extreme shock tube problem, the computational domain
is [0,9] filled with an ideal perfect gas with c = 5/3. The initial condition consists of large ratio jumps for the
energy and density and is given by the following data
ðq; u; eÞ ¼ ð1; 0; 0:1Þ; 0 6 x < 3

ðq; u; eÞ ¼ ð0:001; 0; 10�7Þ; 3 < x 6 9:
It is very difficult for a scheme to obtain accurate positions of the contact and shock discontinuities in such a
severe test case [35]. The internal energy results of our schemes with the Dukowicz flux are shown in Fig. 3 (the
left pictures) with 1000 initially uniform cells at t = 6. By comparing with the exact solution, we can see that
the shape and the position of the contact discontinuity and the shock can be maintained better when the high
order ENO schemes are used. In this test, the results performed by the different fluxes are visually different, so
we also show the results with the HLLC flux as an example in the right pictures of Fig. 3. From the figures, we
can observe that the overall resolution with the HLLC flux is better than that with the Dukowicz flux,
although the latter does resolve the contact more sharply than the former.
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Fig. 1. The density results of the Lax problem on a 100 initially uniform cells. Left: first-order; Middle: second-order; Right: third-order.
From Top to bottom: Godunov flux, Dukowicz flux, L–F flux, HLLC flux.
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Fig. 2. The density results. Left: the Noh problem at t = 0.6; Right: the blast wave problem at t = 0.038. Top: first-order; Middle: second-
order; Bottom: third-order.
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Fig. 3. The internal energy of the Leblanc problem. Left: with the Dukowicz flux; Right: with the HLLC flux. Top: first-order; Middle:
second-order; Bottom: third-order.
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Example 3.5. (Shock entropy wave interactions [32]). On a computational domain [ � 10,5], the initial condi-
tion is
ðq; u; eÞ ¼ ð3:85714; 2:629369; 10:33333Þ; x < �4
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ðq; u; eÞ ¼ ð1þ � sinðkxÞ; 0; 1Þ; x P �4
where � and k are the amplitude and wave number of the entropy wave. In our test, we take � = 0.2 and k = 5.
The final time is t = 1.8. This problem is very suitable for testing the advantage of a high order scheme when
the solution contains both shocks and complex smooth region structures.

In Fig. 4 (the left pictures), the computed density by the Dukowicz flux with 400 cells is plotted against the
reference ‘‘exact’’ solution, which is obtained using the fifth-order Eulerian WENO scheme [15] with 2000 grid
points. We observe that the fine structure in the density profile makes the higher order schemes perform much
better than the lower order methods. For this example, we also show the density results with the HLLC flux in
right pictures in Fig. 4 for a comparison, which have much smaller spurious overshoots and undershoots than
the results with the Dukowicz flux.
4. High order ENO conservative Lagrangian type scheme-two space dimensions

4.1. The scheme in the Cartesian coordinates

The 2D spatial domain X is discretized into M · N computational cells. Ii+1/2,j+1/2 is a quadrilateral cell
constructed by the four vertices {(xi,j,yi,j), (xi+1,j,yi+1,j), (xi+1,j+1,yi+1,j+1), (xi,j+1,yi,j+1)}. Si+1/2,j+1/2 is denoted
to be the area of the cell Ii+1/2,j+1/2 with i = 1, . . . ,M, j = 1, . . . ,N. For a given cell Ii+1/2,j+1/2, the location of
the cell center is denoted by (xi+1/2,j+1/2,yi+1/2,j+1/2). The fluid velocity (ui,j,vi,j) is defined at the vertex of the
mesh. On the non-staggered mesh, all the variables except velocity are stored at the cell center of Ii+1/2,j+1/2 in
the form of cell averages. For example, the values of the cell averages for the cell Ii+1/2,j+1/2 denoted by
�qiþ1=2;jþ1=2, Mx

iþ1=2;jþ1=2, My
iþ1=2;jþ1=2 and Eiþ1=2;jþ1=2 are defined as follows:
�qiþ1=2;jþ1=2 ¼
1

Siþ1=2;jþ1=2

Z Z
Iiþ1=2;jþ1=2

qdxdy; Mx
iþ1=2;jþ1=2 ¼

1

Siþ1=2;jþ1=2

Z Z
Iiþ1=2;jþ1=2

Mxdxdy;

My
iþ1=2;jþ1=2 ¼

1

Siþ1=2;jþ1=2

Z Z
I iþ1=2;jþ1=2

Mydxdy; Eiþ1=2;jþ1=2 ¼
1

Siþ1=2;jþ1=2

Z Z
I iþ1=2;jþ1=2

Edxdy
where q, Mx, My and E are the density, x-momentum, y-momentum and total energy, respectively.

4.1.1. Spatial discretization
The conservative semi-discrete scheme for the Eqs. (2.1) and (2.4) has the following form on the 2D non-

staggered mesh
d

dt

�qiþ1=2;jþ1=2Siþ1=2;jþ1=2

Mx
iþ1=2;jþ1=2Siþ1=2;jþ1=2

My
iþ1=2;jþ1=2Siþ1=2;jþ1=2

Eiþ1=2;jþ1=2Siþ1=2;jþ1=2

0
BBBB@

1
CCCCA ¼ �

Z
oI iþ1=2;jþ1=2

F̂dl ¼ �
Z

oI iþ1=2;jþ1=2

f̂ DðU�n ;Uþn Þ
f̂ MxðU�n ;Uþn Þ
f̂ My ðU�n ;Uþn Þ
f̂ EðU�n ;Uþn Þ

0
BBBB@

1
CCCCAdl: ð4:1Þ
Here U� ¼ ðq�;M�
x ;M

�
y ;E

�Þ are the values of mass, x-momentum, y-momentum and total energy at two sides
of the boundary. U�n ¼ ðq�;M�

n ;E
�Þ, where M�

n are the left and right component values of the momentum
which is normal to the cell boundary, i.e. M�

n ¼ ðM�
x ;M

�
y Þ � n, where n = (nx,ny) in (2.4) is the outward unit

normal of the quadrilateral boundary oIi+1/2,j+1/2. f̂ D, f̂ Mx , f̂ My and f̂ E are the numerical fluxes of mass, x-
momentum, y-momentum and total energy across the cell boundary, respectively. Here in the Lagrangian for-
mulation, we have
f̂ DðUn;UnÞ ¼ 0

f̂ MxðUn;UnÞ ¼ pnx

f̂ My ðUn;UnÞ ¼ pny

f̂ EðUn;UnÞ ¼ pun;

8>>>><
>>>>:

ð4:2Þ
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Fig. 4. The density of the shock entropy wave interactions problem. Left: with the Dukowicz flux; Right: with the HLLC flux. Top: first-
order; Middle: second-order; Bottom: third- order.

1580 J. Cheng, C.-W. Shu / Journal of Computational Physics 227 (2007) 1567–1596



J. Cheng, C.-W. Shu / Journal of Computational Physics 227 (2007) 1567–1596 1581
where un = u Æ n is the normal velocity at the cell boundary.
Suppose the cell boundary oIi+1/2,j+1/2 consists of M edges. The line integral in Eq. (4.1) is discretized by a

q-point Gaussian integration formula,
Z
oI iþ1=2;jþ1=2

F̂dl �
XM

m¼1

Xq

k¼1

xkF̂ðUnðGk; tÞÞDlm; ð4:3Þ
where Dlm is the length of the boundary edge m and Gk are the Gaussian quadrature points at the edge. Here
F̂ðUnðGk; tÞÞ is a numerical flux. For example the L–F flux is given by
bFðUnðGk; tÞÞ ¼
1

2
½ðbFðU�n ðGk; tÞÞ þ bFðUþn ðGk; tÞÞÞ � aðUþðGk; tÞ �U�ðGk; tÞÞ�; ð4:4Þ
where a has the same meaning as that in the one-dimensional case.
We use the high order ENO reconstruction with Roe-type characteristic decomposition [33] to obtain U±

and U�n at the boundary and also use sufficiently high order quadrature to construct schemes up to the
expected high order spatial accuracy, for example the four-point Gauss–Lobatto integral formula is used,
which has G1 = P1, G2 ¼ 1

2
ðP 1 þ P 2Þ �

ffiffi
5
p

10
ðP 2 � P 1Þ, G3 ¼ 1

2
ðP 1 þ P 2Þ þ

ffiffi
5
p

10
ðP 2 � P 1Þ, G4 = P2 and

x1 ¼ x4 ¼ 1
12

, x2 ¼ x3 ¼ 5
12

for the line with endpoints P1 and P2. We have discussed in detail the high order
ENO reconstruction needed in our framework in [6], in the context of remapping. Therefore we do not
repeat the details here and refer the readers to [6]. We do mention here, however, that we have found in
numerical tests that the following WENO procedure is more robust than the ENO procedure for the
third-order case, hence this WENO procedure is used in the third-order numerical tests. In this procedure,
the coefficients of the reconstruction polynomial are chosen as the weighted averages of those determined by
the final three possible stencils introduced in [6]. To be more specific, we use density as an example. To
determine the coefficients {amn,m + n 6 2} of the quadratic polynomial reconstruction function inside the
cell Ii+1/2,j+1/2,
qiþ1=2;jþ1=2ðx; yÞ ¼
X

mþn62

amnðx� xiþ1=2;jþ1=2Þmðy � yiþ1=2;jþ1=2Þ
n
;

suppose the coefficients of the reconstruction polynomials of the three candidate stencils are ai
mn; i ¼ 1; 2; 3,

then we choose amn ¼
P3

i¼1wiai
mn, where wi is the weight chosen as wi ¼ ð1=

P
mþn¼2jai

mnj
2Þ=c with

c ¼
P3

i¼1ð1=
P

mþn¼2jai
mnj

2Þ. This crude WENO reconstruction, which does not increase the accuracy of each
candidate stencil but is very easy to compute, performs quite nicely in our numerical experiments.

The four numerical fluxes introduced in the one-dimensional case are also applied here. The form of these
fluxes in two-dimensions is similar to that in one-dimension except that the left and right values at the cell’s
boundary are chosen as U�n in two-dimensions rather than U± in one-dimension.

4.1.2. The determination of the vertex velocity

Considering a vertex (i, j) shared by four edges which are given a serial number k = 1,2,3,4, we define the
direction of each edge to be the direction of the incremental index i or j, for example the direction of the edge
with two endpoints (i � 1, j) and (i, j) is from (i � 1, j) to (i, j). Along each edge k we can obtain the left value of
velocity ðuk�; vk�Þ ¼ ðMk�

x =qk�;Mk�
y =qk�Þ and the right velocity ðukþ; vkþÞ ¼ ðMkþ

x =qkþ;Mkþ
y =qkþÞ at this vertex

in the procedure of the flux computation since the vertex (i, j) is one of the Gaussian quadrature points for our
choice. We then split the left and right velocities into normal and tangential components along the edge k.
Denote ðnk

x; n
k
yÞ to be the clockwise unit normal of the edge k and denote wk�

t and wkþ
t to be their tangential

components and wk�
n and wkþ

n to be their normal components. Then the tangential velocity of the vertex
(i,j) along the edge k is defined as
wk
t ¼

1

2
ðwk�

t þ wkþ
t Þ; k ¼ 1; 2; 3; 4: ð4:5Þ
As to the normal velocity, for the Godunov and the Dukowicz fluxes, we obtain it by the Riemann solver here
and for the L–F flux and the HLLC flux, we get it by the Roe average of the normal velocities from its two
sides as in the one-dimensional case, that is
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wk
n ¼

ffiffiffiffiffiffi
q�
p

wk�
n þ

ffiffiffiffiffiffi
qþ
p

wkþ
nffiffiffiffiffiffi

q�
p þ

ffiffiffiffiffiffi
qþ
p ; k ¼ 1; 2; 3; 4; ð4:6Þ
where q± are the densities from the left and right cells of the edge k, respectively.
Thus by the formulas (4.5) and (4.6), we can get four x-velocities and y-velocities at the vertex (i, j) which

have the following form,
wk
x ¼ wk

nnk
x � wk

t nk
y ; wk

y ¼ wk
nnk

y þ wk
t nk

x; k ¼ 1; 2; 3; 4: ð4:7Þ
Finally, the velocity at the vertex (i, j) is obtained as follows,
ui;j ¼
1

4
ðw1

x þ w2
x þ w3

x þ w4
xÞ; vi;j ¼

1

4
ðw1

y þ w2
y þ w3

y þ w4
yÞ: ð4:8Þ
4.1.3. Time discretization

The time discretization is also similar to that in one-dimension. We only list the first-order Lagrangian type
scheme as a representative here to save space
�qnþ1
iþ1=2;jþ1=2Snþ1

iþ1=2;jþ1=2 � �qn
iþ1=2;jþ1=2Sn

iþ1=2;jþ1=2

Mx;nþ1
iþ1=2;jþ1=2Snþ1

iþ1=2;jþ1=2 �Mx;n
iþ1=2;jþ1=2Sn

iþ1=2;jþ1=2

My;nþ1
iþ1=2;jþ1=2Snþ1

iþ1=2;jþ1=2 �My;n
iþ1=2;jþ1=2Sn

iþ1=2;jþ1=2

Enþ1
iþ1=2;jþ1=2Snþ1

iþ1=2;jþ1=2 � En
iþ1=2;jþ1=2Sn

iþ1=2;jþ1=2

0
BBBBB@

1
CCCCCA ¼ �Dtn

XM

m¼1

Xq

k¼1

xkF̂ðUnðGk; tÞÞDlm; ð4:9Þ
where Sn
iþ1=2;jþ1=2 and Snþ1

iþ1=2;jþ1=2 are the areas of Cell Ii+1/2,j+1/2 at the n-th and (n + 1)th time steps, respec-

tively. Snþ1
iþ1=2;jþ1=2 is determined by the following simple formulas,
xnþ1
i;j ¼ un

i;jDtn þ xn
i;j; ynþ1

i;j ¼ vn
i;jDtn þ yn

i;j;

Snþ1
i;j ¼

1

2
½ðxnþ1

iþ1;jþ1 � xnþ1
i;j Þðynþ1

i;jþ1 � ynþ1
iþ1;jÞ þ ðxnþ1

i;jþ1 � xnþ1
iþ1;jÞðynþ1

iþ1;jþ1 � ynþ1
i;j Þ�;

i ¼ 1; . . . ;M ; j ¼ 1; . . . ;N :

ð4:10Þ
The time step Dtn is chosen as follows
Dtn ¼ kmini¼1;...;M ;j¼1;...;NðDln
iþ1=2;jþ1=2=cn

iþ1=2;jþ1=2Þ; ð4:11Þ
where Dln
iþ1=2;jþ1=2 is the shortest edge length of the cell Ii+1/2,j+1/2, and cn

iþ1=2;jþ1=2 is the sound speed within this
cell. The Courant number k in the following tests is set to be 0.5 unless otherwise stated.

4.2. The scheme in the cylindrical coordinates

We seek to study the flow governed by the axisymmetric compressible Euler equations which have the fol-
lowing integral form in the Lagrangian formulation,
d
dt

R R
XðtÞ qrdxdr ¼ 0

d
dt

R R
XðtÞMxrdxdr ¼ �

R
CðtÞ pnxrdl

d
dt

R R
XðtÞMrrdxdr ¼ �

R
CðtÞ pnrrdlþ

R R
XðtÞðp þ qu2

hÞdxdr
d
dt

R R
XðtÞMhrdxdr ¼ �

R R
XðtÞ quhurdxdr

d
dt

R R
XðtÞ Erdxdr ¼ �

R
CðtÞ punrdl;

8>>>>>>>><
>>>>>>>>:

ð4:12Þ
where q is the density, p is the pressure, Mx,Mr, Mh are the momentum components in the axial, radial and
azimuthal directions, and ux,ur,uh are the velocity components in the above mentioned directions. n = (nx,nr)
is the unit outward normal to the boundary C(t) in the x � r coordinates. un = (ux,ur) Æ n is the normal velocity.
E is the total energy.



J. Cheng, C.-W. Shu / Journal of Computational Physics 227 (2007) 1567–1596 1583
The values of the cell averages for the cell Ii+1/2,j+1/2, denoted by �qiþ1=2;jþ1=2, Mx
iþ1=2;jþ1=2, Mr

iþ1=2;jþ1=2,
Mh

iþ1=2;jþ1=2 and Eiþ1=2;jþ1=2, are defined as follows
�qiþ1=2;jþ1=2 ¼
1

V iþ1=2;jþ1=2

Z Z
Iiþ1=2;jþ1=2

qrdxdr; Mx
iþ1=2;jþ1=2 ¼

1

V iþ1=2;jþ1=2

Z Z
I iþ1=2;jþ1=2

Mxrdxdr;

Mr
iþ1=2;jþ1=2 ¼

1

V iþ1=2;jþ1=2

Z Z
Iiþ1=2;jþ1=2

Mrrdxdr; Mh
iþ1=2;jþ1=2 ¼

1

V iþ1=2;jþ1=2

Z Z
I iþ1=2;jþ1=2

Mhrdxdr;

Eiþ1=2;jþ1=2 ¼
1

V iþ1=2;jþ1=2

Z Z
I iþ1=2;jþ1=2

Erdxdr:
where V iþ1=2;jþ1=2 ¼
R R

I iþ1=2;jþ1=2
rdxdr is the volume of the cell Ii+1/2,j+1/2.

The conservative semi-discrete scheme for the Eq. (4.12) has the following form
d

dt

�qiþ1=2;jþ1=2V iþ1=2;jþ1=2

�Mx
iþ1=2;jþ1=2V iþ1=2;jþ1=2

�Mr
iþ1=2;jþ1=2V iþ1=2;jþ1=2

�Mh
iþ1=2;jþ1=2V iþ1=2;jþ1=2

�Eiþ1=2;jþ1=2V iþ1=2;jþ1=2

0
BBBBBB@

1
CCCCCCA ¼ �

Z
oI iþ1=2;jþ1=2

bFdlþ

0

0R R
I iþ1=2;jþ1=2

ðp þ qu2
hÞdxdr

�
R R

I iþ1=2;jþ1=2
quhurdxdr

0;

0
BBBBBB@

1
CCCCCCA ð4:13Þ
where
Z
oI iþ1=2;jþ1=2

bFdl ¼
Z

oI iþ1=2;jþ1=2

f̂ DðU�n ;Uþn Þ
f̂ MxðU�n ;Uþn Þ
f̂ MrðU�n ;Uþn Þ
f̂ MhðU�n ;Uþn Þ
f̂ EðU�n ;Uþn Þ

0
BBBBBBB@

1
CCCCCCCA

dl; ð4:14Þ
and
f̂ DðUn;UnÞ ¼ 0;

f̂ MxðUn;UnÞ ¼ pnxr

f̂ MrðUn;UnÞ ¼ pnrr

f̂ MhðUn;UnÞ ¼ 0

f̂ EðUn;UnÞ ¼ punr:

8>>>>>><
>>>>>>:

ð4:15Þ
The calculation of the first term on the right-hand side of Eq. (4.13) is similar to that in the Cartesian coor-
dinates introduced in the above subsection. The calculation of the second term is performed by a suitable
Gaussian integral in the corresponding cell to guarantee its high order accurate approximation.

We use the same method as that used in the Cartesian coordinates to decide the velocity components (ux,ur) at
the vertex in the x and r directions (since the grid moves just in the x � r coordinates, we only need to know ux,ur).

We also use the Runge–Kutta method to discretize the time derivatives in (4.13). The method to calculate
the time step is the same as that in the Cartesian coordinates.

5. Numerical results in two space dimensions

It is much more difficult to simulate a 2D problem than to simulate a 1D one in the Lagrangian framework,
mainly because of the mesh distortion in multi-dimensions. In this section, although we have run most exam-
ples using the first, second and third-order schemes with the Godunov flux, the Dukowicz flux, the HLLC flux
and the L–F flux, respectively, we will only show the results performed by the Dukowicz flux as representatives
unless the results of the different fluxes are obviously different.
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5.1. Numerical results in the Cartesian coordinates

5.1.1. Accuracy test

In the Cartesian coordinates, we choose the two-dimensional vortex evolution problem [30] as our accuracy
test function. The vortex problem is described as follows: the mean flow is q = 1, p = 1 and (u,v) = (1, 1) (diag-
onal flow). We add to this mean flow an isentropic vortex perturbations in (u,v) and the temperature T = p/q,
no perturbation in the entropy S = p/qc.
Table
Errors
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Table
Errors
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ðdu; dvÞ ¼ �

2p
e0:5ð1�r2Þð��y;�xÞ; dT ¼ �ðc� 1Þ�2

8cp2
eð1�r2Þ; dS ¼ 0
where ð��y;�xÞ ¼ ðx� 5; y � 5Þ, r2 ¼ �x2 þ �y2, and the vortex strength is � = 5.
The computational domain is taken as [0,10] · [0, 10], and periodic boundary conditions are used.
The convergence results for the first, second and third-order ENO Lagrangian type schemes at t = 1 are

listed in Tables 4–6, respectively. In Tables 4 and 5, we can see the desired first and second-order accuracy.
However in Table 6 we cannot observe the expected third-order accuracy. Further exploration indicates that
this accuracy degeneracy cannot be cured by the modified ENO scheme via the introduction of a biasing factor
4
of the first-order scheme on 2D Cartesian coordinates for the vortex problem using Nx · Ny initially uniform mesh cells

Norm Density Order Momentum Order Energy Order

L1 0.83E�2 – 0.23E�1 – 0.41E�1 –
L1 0.73E�1 – 0.19E+0 – 0.35E+0 –
L1 0.52E�2 0.69 0.13E�1 0.84 0.24E�1 0.76
L1 0.50E�1 0.56 0.10E+0 0.89 0.20E+0 0.84
L1 0.29E�2 0.85 0.69E�2 0.91 0.13E�1 0.90
L1 0.26E�1 0.91 0.53E�1 0.96 0.10E+0 0.93
L1 0.15E�2 0.93 0.36E�2 0.95 0.66E�2 0.95
L1 0.14E�1 0.97 0.27E�1 0.98 0.53E�1 0.95

5
of the second-order ENO scheme on 2D Cartesian coordinates for the vortex problem using Nx · Ny initially uniform mesh cells

Norm Density Order Momentum Order Energy Order

L1 0.58E�2 – 0.13E�1 – 0.23E�1 –
L1 0.91E�1 – 0.15E+0 – 0.35E+0 –
L1 0.16E�2 1.85 0.40E�2 1.74 0.72E�2 1.71
L1 0.28E�1 1.72 0.48E�1 1.66 0.12E+0 1.52
L1 0.51E�3 1.65 0.12E�2 1.77 0.21E�2 1.79
L1 0.85E�2 1.71 0.18E�1 1.44 0.39E�1 1.63
L1 0.16E�3 1.70 0.33E�3 1.81 0.59E�3 1.82
L1 0.36E�2 1.26 0.67E�2 1.41 0.13E�1 1.57

6
of the third-order ENO scheme on 2D Cartesian coordinates for the vortex problem using Nx · Ny initially uniform mesh cells

Norm Density Order Momentum Order Energy Order

L1 0.31E�2 – 0.57E�2 – 0.11E�1 –
L1 0.30E�1 – 0.58E�1 – 0.18E+0 –
L1 0.77E�3 2.01 0.14E�2 2.03 0.28E�2 2.04
L1 0.97E�2 1.64 0.20E�1 1.51 0.60E�1 1.58
L1 0.19E�3 2.04 0.33E�3 2.08 0.66E�3 2.06
L1 0.25E�2 1.98 0.49E�2 2.07 0.13E�1 2.24
L1 0.47E�4 1.99 0.81E�4 2.01 0.16E�3 2.02
L1 0.81E�3 1.59 0.13E�2 1.89 0.34E�2 1.88
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in the stencil-choosing process. It represents a fundamental problem in our way of formulating the Lagrangian
schemes. In a Lagrangian simulation, each cell represents a material particle, thus its shape may change with
the movement of fluid, that means the cell with a quadrilateral shape initially may not keep its shape as a
quadrilateral at a later time. It usually becomes a curved quadrilateral, while during our Lagrangian simula-
tion the mesh is always supposed to be quadrilateral which is determined by the movement of its four vertices.
This approximation of the mesh will bring second-order error into the scheme. Thus for a Lagrangian scheme
in multi-dimensions, it can be at most second-order accurate if curved meshes are not used. We will not
explore curved meshes in this paper, as it would require a new reconstruction procedure based on such cells
with curved boundaries. Our ‘‘third-order’’ scheme is therefore only second-order accurate. However, in the
following examples, we indeed often find better resolution in the fluid field by the third-order scheme com-
pared with that obtained by the lower order schemes, despite its formal second-order accuracy. We also
observe third-order accuracy in some test problems, e.g. Table 9 in Section 5.2.1, when the mesh does not lose
its quadrilateral shape.

5.1.2. Non-oscillatory tests

Example 5.1. (The Saltzman problem [10]). This is a well known difficult test case to validate the robustness of
a Lagrangian scheme when the mesh is not aligned with the fluid flow. The problem consists of a rectangular
box whose left end is a piston. The piston moves into the box with a constant velocity of 1.0. The initial mesh
is 100 cells in the x-direction and 10 cells in the y-direction which is defined by
xði; jÞ ¼ ði� 1ÞDxþ ð11� jÞ sinð0:01pði� 1ÞÞDy; yði; jÞ ¼ ðj� 1ÞDy;
where Dx = Dy = 0.01. The initial mesh is displayed in Fig. 5. Notice that the initial mesh is deliberately dis-
torted to set it as a more demanding test case. The working fluid is described by an ideal gas with c = 5/3. The
initial conditions involve a stationary gas with a unity density and an internal energy of 10�4. Reflective
boundary conditions are used on the right, upper and lower boundaries. For this test case, it is necessary
to first use a smaller Courant number in order to maintain stability. The Courant number k is set to be
0.01 initially and returns to be 0.5 after t = 0.01. The analytic post shock density is 4.0 and the shock speed
is 1.333. The purely Lagrangian numerical results by using the Dukowicz flux are shown in Fig. 6 for the time
t = 0.6. At this time, the shock is expected to be located at x = 0.8. We can observe that our high order
schemes preserve one-dimensional solution well except for the region near the up and bottom wall boundaries
where the results are affected by the boundary conditions. Also the higher order schemes give better shock
resolution for this example. For comparison, Fig. 7 shows the results of our scheme with the L–F flux which
demonstrate that the solution of the L–F flux is more dissipative but less oscillatory, in comparison with the
solution of the Dukowicz flux for this problem.

Example 5.2. (The Sedov blast wave problem in a Cartesian coordinate system [27]). The Sedov blast wave prob-
lem models the expanding wave by an intense explosion in a perfect gas. The simulation is first performed on a
Cartesian grid whose initial uniform grid consists of 30 · 30 rectangular cells with a total edge length of 1.1 in
both directions. The initial density is unity and the initial velocity is zero. The specific internal energy is zero
except in the first zone where it has a value of 182.09. The analytical solution gives a shock at radius unity at time
unity with a peak density of 6. Fig. 8 shows the results by the purely Lagrangian calculations at the time t = 1. We
can clearly see that the high order ENO scheme obtains more precise solution than the lower order one.
X
0 0.2 0.4 0.6 0.8 1

Fig. 5. The initial mesh of the Saltzman problem.
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Example 5.3. (The Dukowicz problem). In this and the next examples, we will test the performance of our
scheme both in the pure Lagrangian and ALE calculations. In ALE calculations, at the certain time step, we
first use our Lagrangian type scheme to update the solution and mesh, then we rezone the Lagrangian mesh
to a more optimal position and finally remap the Lagrangian solutions to the new grid. The conservative remap-
ping method is also based on the ENO methodology and is described in detail in [6]. The Dukowicz problem is a
two-dimensional shock refraction problem on an uneven mesh designed by Dukowicz and Meltz [10].

The computational domain consists of two adjacent regions with different densities but equal pressures. The
left region is a 36 · 30 mesh with a normal left boundary and a right boundary aligned at 30� to the horizontal
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direction. The right region is a 40 · 30 mesh uniformly slanted at 30� to the horizontal direction. See Fig. 9.
The initial conditions of the two regions are qL = 1, uL = 0,pL = 1 and qR = 1.5,uR = 0,pR = 1, respectively.
The upper and lower boundaries are reflective and the left boundary is a piston, which moves from the left
with velocity 1.48. The problem is run to a time of 1.3, just before the shock would leave the right region. The
exact solution to the problem is shown in Fig. 10 which is only valid away from the boundary as it is obtained
under the assumption of an infinite medium. Fig. 11 shows the pure Lagrangian results of our first and second
schemes. We have been unable to obtain stable results to the final time for our third-order scheme in the pure
Lagrangian simulations for this problem, as the mesh gets tangled near the bottom boundary due to the
numerical boundary condition for the ghost cells. In the ALE calculations, in order to make the results of our
schemes of different order comparable, we have attempted to keep the number of rezoning and remapping
steps for these schemes to be the same, which is set as 16 in this test. For example, for the second-order
scheme, when the area of the minimum cell is less than 2 · 10�4 or the time step is less than 2 · 10�3, we rezone
the meshes by keeping the vertices at the left and right boundaries unchanged and redistributing the points in
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the x-direction evenly. The numerical results using the ALE calculations are shown at time t = 1.3 in Fig. 12.
The density contour plots in Fig. 12 give consistent results with the exact solution. The results of our schemes
show the interface along with the incident and the transmitted shocks clearly. The reflective shock does not
show up clearly due to the small difference in density across it. Also the higher order schemes produce results
with better resolution for this example.
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Fig. 12. The density contour plot of the Dukowicz problem by using the ALE method. Top: first-order; Middle: second-order; Bottom:
third-order.
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Example 5.4. (Double Mach reflection). The computational domain for this problem is chosen to be
[0,4] · [0, 1]. The reflecting wall lies at the bottom of the computational domain starting x = 1/6. Initially a
right-moving Mach 10 shock is positioned at x = 1/6, y = 0 and makes a 60� angle with the x-axis. For the
bottom boundary, the exact post-shock condition is imposed for the part from x = 0 to x = 1/6 and a reflec-
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tive boundary condition is used for the rest. At the top boundary of our computational domain, the flow val-
ues are set to describe the exact motion of the Mach 10 shock. In this example, we let the mesh return to its
original state after each time step. We should note that initially the Courant number for the third-order
scheme takes a smaller value at 0.45 and after time = 0.01 it returns to the usual value 0.5. The density results
at the time t = 0.2 on a 240 · 60 uniform grid are shown in Fig. 13, which demonstrate that our schemes also
perform well using the Eulerian mesh.
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Fig. 13. The results of the double Mach reflection problem with Eulerian meshes. Top: first-order; Middle: second-order; Bottom: third-
order. Density contour plots from 2 to 20 with 19 equally spaced contours.
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5.2. Numerical results in the cylindrical coordinates

5.2.1. Accuracy test

In the cylindrical coordinates, we test a problem with non-trivial velocities in the x and h directions. The
longitudinal vortex located in the r � h coordinates moves along the symmetric x-coordinate with a constant
velocity. Here we let ux = 2,ur = 0. uh is the azimuthal velocity of the vortex which has the same definition as
that introduced in the previous subsection. To avoid the influence of the coordinate singularity at r = 0, we
perform our accuracy tests on the computational domain [0, 10] · [1, 11]. The results are presented in Tables
7–9 which show a satisfactory convergence performance in the cylindrical coordinates. In particular, we hap-
pily observe the desired third-order accuracy in the results of our third-order schemes, which is due to the
mesh being able to keep its quadrilateral shape as the time marches in this test. The result also reinforces
our previous claim about the reason of the accuracy degeneracy phenomenon due to the appearance of curved
quadrilaterals, which is approximated by quadrilaterals in our numerical procedure, in the 2D Cartesian accu-
racy test.
Table 7
Errors of the first-order scheme on 2D cylindrical coordinates for the vortex problem using Nx · Nr initially uniform mesh cells

Nx Norm Density Order Momentum Order Energy Order

20 L1 0.74E�3 – 0.23E�2 – 0.49E�2 –
L1 0.16E�1 – 0.11E+0 – 0.10E+0 –

40 L1 0.38E�3 0.97 0.11E�2 1.07 0.25E�2 0.97
L1 0.14E�1 0.14 0.74E�1 0.60 0.73E�1 0.50

80 L1 0.19E�3 1.02 0.51E�3 1.07 0.12E�2 1.02
L1 0.11E�1 0.41 0.47E�1 0.67 0.47E�1 0.61

160 L1 0.91E�4 1.02 0.25E�3 1.04 0.61E�3 1.02
L1 0.74E�2 0.55 0.29E�1 0.69 0.29E�1 0.71

Table 8
Errors of the second-order ENO scheme on 2D cylindrical coordinates for the vortex problem using Nx · Nr initially uniform mesh cells

Nx Norm Density Order Momentum Order Energy Order

20 L1 0.30E�3 – 0.95E�3 – 0.18E�2 –
L1 0.91E�2 – 0.59E�1 – 0.53E�1 –

40 L1 0.60E�4 2.31 0.21E�3 2.19 0.35E�3 2.38
L1 0.41E�2 1.15 0.19E�1 1.65 0.21E�1 1.34

80 L1 0.17E�4 1.85 0.55E�4 1.93 0.93E�4 1.91
L1 0.11E�2 1.84 0.48E�2 1.97 0.53E�2 1.97

160 L1 0.42E�5 1.99 0.14E�4 1.96 0.23E�4 1.99
L1 0.34E�3 1.77 0.13E�2 1.88 0.13E�2 1.97

Table 9
Errors of the third-order ENO scheme on 2D cylindrical coordinates for the vortex problem using Nx · Nr initially uniform mesh cells

Nx Norm Density Order Momentum Order Energy Order

20 L1 0.22E�4 – 0.96E�4 – 0.81E�4 –
L1 0.63E�3 – 0.31E�2 – 0.24E�2 –

40 L1 0.24E�5 3.18 0.98E�5 3.30 0.89E�5 3.18
L1 0.84E�4 2.90 0.27E�3 3.49 0.46E�3 2.39

80 L1 0.26E�6 3.20 0.11E�5 3.13 0.10E�5 3.09
L1 0.19E�4 2.11 0.55E�4 2.31 0.12E�3 1.97

160 L1 0.30E-7 3.15 0.13E�6 3.13 0.14E�6 2.89
L1 0.32E�5 2.60 0.10E�4 2.39 0.18E�4 2.69
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5.2.2. Non-oscillatory tests

Example 5.5. (The Noh problem in a cylindrical coordinate system [24]). We test the Noh problem in a
cylindrical coordinate system. The problem domain is [0,1] · [0,1]. The initial state of the fluid is uniform with
(q,u,v,e) = (1,0, � 1,0). The shock is generated in a perfect gas (c = 5/3) by bringing the cold gas to rest at a
rigid wall (r = 0). The analytical post shock density is 16 and the shock speed is 1/3. Fig. 14 shows the
Lagrangian simulation results of our schemes at t = 0.6 with 10 · 200 grids. We observe good performance of
our schemes, with an apparent advantage of the high order scheme over the low order one on the same mesh.

Example 5.6. (The Sedov problem in a cylindrical coordinate system with square grids [27]). We present the
results of the Sedov blast wave in a cylindrical coordinate system as an example of a diverging shock wave.
The initial computational domain is a 1.125 · 1.125 square consisting of 30 · 30 uniform cells. The initial den-
sity is unity and the initial velocity is zero. The specific internal energy is zero except in the first cell where it
has a value of 1489.7. The analytical solution is a shock at radius unity at time unity with a peak density of 4.
Fig. 15 shows the results of our schemes by a purely Lagrangian computation. Here for the third-order scheme
the Courant number initially is also taken as a smaller value at 0.01, and after time = 0.01 it returns to the
normal value 0.5. Fig. 15 demonstrates that the Lagrangian type schemes also can produce good results for
the Sedov problem in the cylindrical coordinates.
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Example 5.7. (Interaction of a shock with longitudinal vortex [11]). The computational domain is
[�8,4] · [0, 5]. At t = 0, there is a mean flow with a stationary shock at x = 0, that is
ðq; p; ux; ur; uhÞ ¼
ðq1; p1; ux;1; ur;1; uh;1Þ ¼ ð1; 1; c1=2M1; 0; 0Þ; x < 0

ðq2; p2; ux;2; ur;2; uh;2Þ ¼
ðcþ1ÞM2

1

2þM2
1
ðc�1Þ ;

2cM2
1
�ðc�1Þ
ðcþ1Þ ;M2

ffiffiffiffiffiffiffi
c p2

q2

q
; 0; 0

� �
; x > 0;

8<
: ð5:1Þ
where M1 is the Mach number at the upstream of the shock (x < 0) and M2 ¼
2þM2

1
ðc�1Þ

2cM2
1
�ðc�1Þ is the Mach number at

the downstream of the shock (x > 0).
Next, we superimpose an isentropic vortex with its axis along r = 0 on the upstream of the mean flow. The

perturbation of azimuthal velocity u0h and temperature T 0 associated with the vortex are given by
u0h ¼
�r
2p

e0:5ð1�r2Þ; T 0 ¼ � ðc� 1Þ�2

8cp2r2
0

e1�r2

; ð5:2Þ
where r0 is the vortex core radius and � is a non-dimensional circulation at r = 1. The axial and radial velocities
u0x; u

0
r are zero. With no perturbation of the entropy S = log(p/qc) of the original mean flow, the final perturbed

flow at x < 0 is as follows
q ¼ T 1 þ T 0

p1=q
c
1

� �1=ðc�1Þ

; p ¼ ðT 1 þ T 0Þq; ux ¼ ux;1; ur ¼ 0; uh ¼ u0h;
where T1 = p1/q1. In this test, we set M1 = 2, � = 7 and r0 = 1. The supersonic inflow, characteristic, symmetry
and Neumann conditions are used at the left, right, bottom and upper boundaries, respectively. The initial grid
is uniform. After every three Lagrangian time steps, we take the rezoning and remapping steps to return the
Lagrangian grid to the initial grid. The density results at two typical times of our schemes are given in Fig. 16.
From these figures we observe that the resolution of high order schemes on coarser meshes are comparable to
that of low order schemes on finer meshes, and more details of the fluid are captured by using higher order
schemes. These results are also consistent with the results shown in [11].
6. Concluding remarks

In this paper we have described a class of Lagrangian type schemes for solving Euler equations which are
based on high order essentially non-oscillatory (ENO) reconstruction both in the Cartesian coordinates and in
the cylindrical coordinates. The schemes are conservative for density, momentum and total energy, maintain
formal high order accuracy both in space and time and can achieve at least uniformly second-order accuracy
with moving and distorted Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be
tuned for individual test cases. It is possible to extend the method to higher order accuracy by using curved
meshes, but we have not studied this generalization in this paper. Comparing with many current Lagrangian
type schemes, our ENO schemes overcome some of their disadvantages such as non-conservativity of momen-
tum and total energy, low accuracy, and the existence of parameters which must be adjusted for individual test
cases. One-dimensional and two-dimensional examples in the Cartesian as well as cylindrical coordinates have
been presented which demonstrate the good performance of the schemes both in purely Lagrangian and in
ALE calculations. Although we have only performed tests on quadrilateral grids, the strategy can be used
on any polygon grid such as triangles. The investigation and improvement of these high order schemes in
multi-dimensions in terms of accuracy, resolution, and desirable properties such as symmetry preservation,
constitute future work.
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