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Abstract

We develop a class of Lagrangian type schemes for solving the Euler equations of compressible gas dynamics both in
the Cartesian and in the cylindrical coordinates. The schemes are based on high order essentially non-oscillatory (ENO)
reconstruction. They are conservative for the density, momentum and total energy, can maintain formal high order
accuracy both in space and time and can achieve at least uniformly second-order accuracy with moving and distorted
Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test cases. One
and two-dimensional numerical examples in the Cartesian and cylindrical coordinates are presented to demonstrate the
performance of the schemes in terms of accuracy, resolution for discontinuities, and non-oscillatory properties.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In numerical simulations of multi-dimensional fluid flow, there are two typical choices: a Lagrangian frame-
work, in which the mesh moves with the local fluid velocity, and an Eulerian framework, in which the fluid
flows through a grid fixed in space. More generally, the motion of the grid can also be chosen arbitrarily, this
method is called the Arbitrary Lagrangian—Eulerian method (ALE; cf. [14,2,21,16,25]). Most ALE algorithms
consist of three phases, a Lagrangian phase in which the solution and the grid are updated, a rezoning phase in
which the nodes of the computational grid are moved to a more optimal position and a remapping phase in
which the Lagrangian solution is transferred to the new grid.

In this paper, we focus on computational hydrodynamic methods for the Euler equations where the mesh
moves with the flow velocity. Such methods, which we refer to as Lagrangian type methods, imply the use of
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distorted or non-uniform meshes. Particular examples include the Lagrangian methods, or the ALE methods
which contain a Lagrangian phase.

Pure Lagrangian methods, and certain ALE methods which can capture contact discontinuities sharply (see
e.g. [19]), are widely used in many fields for multi-material flow simulations such as astrophysics and compu-
tational fluid dynamics (CFD). We will only consider single material in this paper, however the pure Lagrang-
ian method and the ALE method based on the HLLC flux have the potential to be applied to multi-material
flows. Comparing with Eulerian methods, Lagrangian type methods avoid or can reduce a source of numerical
error due to the advection terms in the conservation equations. For this reason, Lagrangian type methods are
frequently preferred in one-dimensional computations where mesh distortion plays no role. Even though the
Euler equations are much simpler in the Lagrangian framework as they do not contain the advection terms, in
two or more space dimensions they are actually more difficult to solve since the mesh moves with the fluid and
can easily lose its quality. In the past years, many efforts have been made to develop Lagrangian type methods.
Some algorithms are developed from the non-conservative form of the Euler equations, for example, those
discussed in [23,3-5,18,37]. The other class of Lagrangian type algorithms starts from the conservative form
of the Euler equations which usually can guarantee exact conservation. See for example [2,8,9,7,17,22,34,20]
etc.

Most existing Lagrangian type schemes for the Euler equations have first or at most second-order accuracy.
Among them many Lagrangian schemes of non-conservative form are only first-order accurate, because of a
first-order error due to the non-conservative formulation of the momentum equation. On the other hand,
some of the conservative Lagrangian type schemes apply the linear interpolation strategy to achieve sec-
ond-order accuracy, meanwhile they usually use a flux limiter to control spurious oscillations which leads
to a possible loss of this second-order accuracy at some special points such as smooth extrema and sonic
points.

Essentially non-oscillatory (ENO) schemes, first introduced by Harten and Osher [13] and Harten et al.
[12], can achieve uniformly high order accuracy with sharp, essentially non-oscillatory shock transitions. In
the subsequent years, ENO schemes in the Eulerian formulation have accomplished successful applications
in many fields especially with problems containing both shocks and complicated smooth flow structures,
see for example [29]. Eulerian ENO schemes on unstructured meshes are developed in [1]. However, the
application of the ENO methodology in the Lagrangian formulation does not seem to have been exten-
sively explored.

In this paper, we develop a class of Lagrangian type schemes for solving the Euler equations which are
based on the high order ENO reconstruction both in the Cartesian and in the cylindrical coordinates. The
schemes are conservative for the density, momentum and total energy, can maintain formal high order accu-
racy both in space and time and can achieve at least uniformly second-order accuracy on moving and distorted
Lagrangian meshes, are essentially non-oscillatory, and have no parameters to be tuned for individual test
cases. They should also be generalizable to higher than second-order accuracy by using curved meshes, but
this generalization is not carried out in this paper. Several one and two-dimensional numerical examples in
the Cartesian and cylindrical coordinates are presented which demonstrate the good performance of the
schemes both in purely Lagrangian and in ALE calculations.

An outline of the rest of this paper is as follows. In Section 2, we describe the individual steps of the ENO
Lagrangian type scheme in one space dimension. In Section 3, we present one-dimensional numerical results.
In Section 4, we extend the scheme to two space dimensions both in the Cartesian and in the cylindrical coor-
dinates, while in Section 5 two-dimensional numerical examples are given to verify the performance of the
ENO Lagrangian type method. In Section 6 we give concluding remarks.

2. High order ENO conservative Lagrangian type scheme — one space dimension
2.1. The compressible Euler equations in Lagrangian formulation

The Euler equations for unsteady compressible flow in the reference frame of a moving control volume can
be expressed in integral form in the Cartesian coordinates as
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3/ UdQ+/ FdI' =0, (2.1)
dt Jou ra

where €(¢) is the moving control volume enclosed by its boundary I'(¢). The vector of the conserved variables
U and the flux vector F are given by

p (u—X)-np
U=|M]|, F=| (u=xXx)-nM+p-n |, (2.2)
E (u—X)-nE+pu-n

where p is the density, u is the velocity, M = pu is the momentum, E is the total energy and p is the pressure, X
is the velocity of the control volume boundary I'(z), n denotes the unit outward normal to I'(¢). The system
(2.1) represents the conservation of mass, momentum and energy.

The set of equations is completed by the addition of an equation of state (EOS) with the following general form

p=plp;e), (2.3)

where e = % -1 |u|2 is the specific internal energy. Especially, if we consider the ideal gas, then the equation of
state has a simpler form,

p=(y—1)pe,

where 7 is a constant representing the ratio of specific heat capacities of the fluid.
This paper focuses on solving the governing Eqs. (2.1) and (2.2) in a Lagrangian framework, in which it is
assumed that X = u, and the vectors U and F then take the simpler form

o 0
U=|M |, F=| p-n |. (2.4)
E pu-n

2.2. The ENO conservative Lagrangian type scheme in one space dimension

Here we develop a conservative Lagrangian type finite volume scheme on a non-staggered mesh. We solve
the conserved variables such as density, momentum and total energy directly. We remark that many Lagrang-
ian type schemes are defined on staggered meshes, where the density and total energy (or internal energy) are
cell-centered and the velocity (or momentum) is vertex centered. However, our computational experiments
indicate that the non-staggered mesh performs better when the momentum rather than the velocity is solved
directly for the momentum equation. In order to save space we will not give the description and results on
staggered meshes.

The spatial domain Q is discretized into N computational cells /1, = [X;,x;4+1] of sizes Axjt1/2 = X1 — X;
withi=1,...,N. For a given cell /;;/,, the location of the cell center is denoted by x;4/,. The fluid velocity u;
is defined at the vertex of the mesh. All variables except the velocity are stored at the cell center x;4/, in the
form of cell averages and this cell is their common control volume. For example, the values of the cell averages
for cell I;1/>, denoted by pir1/2, Miy1/> and Ey.y)», are defined as follows:

_ 1 — 1
pdx, MilZZ—/ Mdx, Eip=-——r0 Edx.
+/ Axi+1/2 Iivip W Axi+1/2 1

i+1/2

Pir1p =
o Axii1p i

i+1/2

2.2.1. Spatial discretization
We first formulate the semi-discrete finite volume scheme of the governing (2.1) and (2.4) as

d Pir1pAXii1 /2 fo(Uy, UL = fo(U; U]
a ]\:fiﬂ/zAxiH/z = - fM(U,-:r],U,-il) —.fM(U;,Uf) (2-5)
EiipAxiiy J}E(Ui:rUUitLl) *J}E(U;Uf)
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where f p 1s the numerical flux of mass across the boundary of its control volume /;(,/,(¢), which is consistent
with the physical flux (2.4) in the sense that /} p(U,U) =0, f » 1s the numerical flux of momentum with
Fur (U,U) = p, and /& is the numerical flux of total energy with ]A‘E(U7 U) = pu. U and U;; -1 represent the left
and right values of U at the cell’s boundary x; and x;;, respectively.

The first step for establishing the scheme is to determine the fluxes (f oo f £), and the first stage of this

step is to identify the values of the primitive variables on each side of the boundary, that is Us,i=1,.
The information we have is the cell average values of the conserved variables U, 2= (Pis1 /2,Ml+1 /Q,E,H /2)
thus we will have to reconstruct these variables. The simplest reconstruction is to assume that all the variables
are piecewise constant, and equal to the given cell averages for each cell. Then we will have p; = p;_/2,
pi = pir1)2 etc., where p; and p;” are the values of density at the left side and the right side of the cell’s bound-
ary x;. This reconstruction is very simple, but is only first-order accurate.

To obtain uniformly second or higher order accurate schemes, in this paper we will use the ENO idea [12] to
reconstruct polynomial functions on each /;;,, by using the information of the cell /;;,/, and its neighbors,
such that they are second or higher order accurate approximations to the functions p(x), M(x) and E(x) etc.,
on I;1,. The procedure allows us to obtain arbitrary high order accurate approximation by a proper recon-
struction. For simplicity, in this paper we will only discuss second- and third-order accurate schemes by per-
forming the second and third-order accurate reconstructions. It is easy to extend the procedure to a higher
order reconstruction.

The method of local characteristic decomposition is used in the procedure of the ENO reconstruction. We
refer to [33] for the details of the Roe-type characteristic decomposition that we have used in this paper. As to
the details of how to conservatively reconstruct a polynomial by the ENO idea in each cell, we refer to [12].
The approximate values of each conserved variable at both sides of the cell’s boundary are obtained from its
reconstructed polynomial. Finally, we obtain the values of the density p;, p;”, the momentum M; , M;" and the
total energy E; ,E; at the left side and the right side of the cell’s boundary x;, respectively.

Next, we will compute the fluxes given the primitive states at each side of a control volume’s boundary.

In this paper, we use the following four typical numerical fluxes:

1) The Godunov flux,

2) The Dukowicz flux,

3) The L-F (Lax—Friedrichs) flux,

4) The HLLC (Harten—Lax-van Leer contact wave) flux.

In the following, we will describe the implementation of the four fluxes in our Lagrangian type schemes. We
have also tested a few other numerical fluxes, such as the Roe flux with an entropy fix. We will however not
present these results to save space.

1. The Godunov flux
To solve the exact Riemann problem at the cell’s boundary x;, we need to know the left and right states at
the boundary. We would like to note that in a Lagrangian scheme the velocity at each side of x; used here
should be the relative fluid velocity, that is, ; — x; and u;" — x;, where u; = M, /p;, uj = M/ /p} and x; is

the cell boundary’s reference moving velocity which can be numerically determined as the Roe average

\ﬁ)\;ﬁi \/p_ The pressure values at the two sides of the vertex x; are of the form
i =(- 1)[ C -t /el ot =@y — l)[EJr (M+)2/pl ] if the ideal gas is considered. With the left
state {p;,u; — X;, p; } and the right state {p;/",u — %;, pI} at x;, we can now obtain the pressure p; and

the relative velocity u; at x; by the Riemann solver The absolute velocity «} at x; should be u; + x;. Thus
the fluxes fp, fu and /& in Scheme (2.5) have the following form
jD (U:7 Uj) =0
(U7, U7) =p; (2.6)
fe(U7UF) = pug.
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2. The Dukowicz flux
The exact Godunov flux needs an iterative procedure to compute, hence the computational complexity and
cost are very high, especially for materials with complex equations of state. Dukowicz [8] developed a sim-
plified and non-iterative approximate Riemann solver to overcome this difficulty.
In this two-shock approximation, the velocity u; at the cell boundary x; is obtained by solving the following
semi-quadratic equation,

p:rAlJrWl* m1n|(u - umm) +p; A |u - umax|(u1 - u:nax) +p+>* _pi‘* =0 (27)

where
umm = —C+/2A u:nax :uz_ +C:/2A:,

+,% +1++ + — R N (2'8)
P =p _pr (Ci) [A7, pT=p; _Zpi (e;) /47

Here ¢ are the left and right values of the sound speed at x; and A* are parameters directly related to the
shock density ratio in the limit of strong shocks. We refer to [8] for the details of the definition of 4™. In par-
ticular, for an ideal gas, 47 = (y +1)/2.
After we have calculated the velocity u], the pressure p; at x; is easily obtained by the following equation,
1 1 1

P =50 D) AT = 0] 330) = 5 07 0] = 0] = 1) (29)
If p; is found to be negative which predicts cavitation, then we set p; = 0. R
Substituting u; and p; obtained from 2.7, 2.8 and 2.9 into (2.6), we then obtain the fluxes s fu and fr.

3. The L-F (Lax—Friedrichs) flux
The Lax—Friedrichs flux is given by

fo(U,U0) = L0 —w(pf —p;)]
(U7 UN) = Loy +pf) — (M) — M) (2.10)
fe(UDUN) = Ypru +pfut) — a(EF — E;))]

where «; is taken as an upper bound for the eigenvalues of the Jacobian, here in the Lagrangian formulation,
o; = max(c; , ¢;). In order to reduce the numerical viscosity, we perform the local characteristic decomposition
and then choose a different o, for each characteristic field based on the size of the corresponding eigenvalue,
rather than using the same «; for all components as in (2.10).
4. The HLLC flux
We use the version of the HLLC flux described in [19] (see also [36]) for the ALE formulation which is
defined by

Fo, ifS >0,
N F(U if ST <0< Sy,
FHLLC — A( % i M (2.11)
F(U™), if Sy <0<S/,
Fr, if S; <0,
where
0 0
FE=| o |0 F=[p |
p;u; piuf
and
pi . (S —v ey
U =|M|=c———<| S —o)M +@p —p) [ (2.12)
S~ — Sy

E; i (S, = v))E; —prv; +p°Su

1 1
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pi’ (S = vl
e Ll e IR A e S | 213)
E7 ’ (87 = v))ET = plvf +p'Su
Sup; Sup;”
F(U;) = SuM; +p* , FU") = SuM;* + p* , (2.14)
SuE; + (Su + %;)p* SuE + (Su + %;)p*
pr=p; vy =8) (07 —Su) +p; (2.15)
and v; =u; —X;, v = ut —X%;. Sy 1s defined as

_ oSS =) — o (S — v ) o — b

S 2.16
" PTS = )—p  —a) 210

The signal velocities S; and S, are defined as
ST =minjv; — ¢, (; —x;) —c, ST =max[v] + ¢, (w, —x;) +cl, (2.17)

where u; and ¢; are the Roe’s average variables for the velocity and the speed of sound. Since we are consid-
ering the Euler equations in the Lagrangian formulation, here we have x; = u;.

Each of the above approximate fluxes has its own special features. The Godunov flux solves exactly the Rie-
mann problem at the cell boundary and thus it has the least numerical viscosity among all the first-order upwind
fluxes. In particular, it has no numerical viscosity for the first equation hence it can maintain the mass of each
cell unchanged during the time marching. But it also has the disadvantage of high computational cost. The
Dukowicz flux shares the advantage of the Godunov flux in its zero viscosity for the first equation and small
numerical viscosity for the other equations, but it has a much smaller computational cost. This will be the flux
of our choice for our test cases. The L-F flux has relatively more numerical viscosity, but it has a very simple
form and is more robust in applications. The HLLC flux’s viscosity and cost are between the Godunov flux and
the L-F flux. Since its viscosity vanishes at the Lagrangian contact where p~ =p*, v~ =v" =0, it can resolve
the contact discontinuities sharply within the Lagrangian method. In fact, it has good performance in many
applications. We remark that both the L-F flux and the HLLC flux usually apply the numerical viscosity in
all the equations including the mass equation, causing a possible change in the cell mass during the time evo-
lution. We do, however, find in the numerical tests that the L-F flux and HLLC flux perform well on capturing
the contact discontinuities in our Lagrangian type schemes. For some of the numerical examples, results with
more than one numerical fluxes will be shown and compared. In the actual simulation, especially in the ALE
calculation, we can choose the most suitable flux depending on the requirement of the individual problem.

2.2.2. The determination of the vertex velocity

In the Lagrangian formulation, the grid moves with the fluid velocity which is defined at the vertex, thus we
would need to know the velocity at the vertex to move the grid. Since the velocity is a derived quantity, we
would need to obtain it from the conserved variables. In the following we describe how to determine the ver-
tex’s velocity in our schemes.

For the Godunov flux and the Dukowicz flux, since we solve (exactly or approximately) the Riemann prob-
lem at each vertex as a cell’s boundary, we naturally obtain the velocity by the Riemann solver there.

For the L-F flux and the HLLC flux, the velocity at the cell’s vertex is defined as the Roe’s average of veloc-
ities from both sides,

_ Vpiu e
Vo e

(2.18)

i

2.2.3. Time discretization
The time marching for the semi-discrete scheme (2.5) is implemented by a class of TVD Runge—Kutta type
methods [31]. Since the mesh changes with the time advancing in the Lagrangian simulation, the velocity, the
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position of each vertex and the size of each cell need to be updated at each Runge—Kutta stage. Thus the form
of the Runge-Kutta method (we take the third-order case here as an example) in our Lagrangian type schemes
is as follows.

Step 1,
X =X Ul A Axgl/z = xt@l —

171 (1) B n n Jn .
Uiy, = Ul pAxyy ) + APL(UY )

Step 2,
3 1
=2 e, A, = -,
=0 A0 _ 34 0 L —1) A a0 .
Ui+1/2Axi+1/2 4 i+1/2Axi+1/2 + 4 [Ui+1/2Axi+]/2 + At L(Ui+l/2)]7
Step 3,
1 2
=g A g Y A A, =t -t

Jn n Jn n 2 172 2) ny (772

Uirll/zAxirllﬁ = gUi+1/zAxi+1/z + 3 [Ui+1/2Ax§+l/2 + At L(U§+)1/z)],
where L is the numerical spatial operator representing the right hand of the scheme (2.5). Here the variables
with the superscripts #n and n + 1 represent the values of the corresponding variables at the nth and (n + 1)th
time steps, respectively.

Notice that such Runge-Kutta schemes are simple convex combinations of Euler forward time stepping,
and are hence conservative and stable whenever the Euler forward time stepping is conservative and stable.
Consistently with the order of the spatial discretization in the scheme (2.5), we apply the Runge-Kutta
method of the same order for its time marching.
At the end of this section, we list the explicit form of our first-order Lagrangian type scheme as an example,
—n+1 n+1 —n n 7 n— n 7 n— n
piII/ZAinI/Z - pi+l/2Axi+1/2 fo(U, U,Il) — fp(U~,Ur")
A+l n+1 A n 7 n— n 7 n— n
Mirl/zAxi-:—l/z - Mi+l/2Axi+1/2 = —Ar" fM(UiJrla U;‘I}) _fM(Uj 7Ui+) ’ (2'19)
T+l n+1 n 7 n— n 7 n— n
Eiil/zAxirl/Z - Ei+l/2Ax;‘1+1/2 fE(U,-HinL) _fE(Ui an+)
where the time step A¢” is determined as
A?" = Jmin;_; _ y(Ax}/c}),

with the Courant number A chosen as / = 0.6 in our computation.
3. Numerical results in one space dimension

In this section, we perform some numerical experiments in one space dimension. Purely Lagrangian com-
putation and the ideal gas with y = 1.4 are used to do the following tests unless otherwise stated. We mainly
show the results obtained with the Dukowicz flux but we also show the results with the other fluxes (the Godu-
nov flux, the L-F flux and the HLLC flux) for some test cases for comparison.

3.1. Accuracy test

We first test the accuracy of our schemes on a problem with smooth solutions. The initial condition we
choose for the accuracy test is
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p(x,0) =2 +sin(2nx), u(x,0) =1+0.1sin(2nx), p(x,0)=1, x€]0,1],

with a periodic boundary condition. Since we do not know the exact solution, we take the numerical results by
using the fifth-order Eulerian WENO scheme [15] with 8000 grids as the reference “exact’ solution. In Tables
1 and 2, we summarize the errors and numerical rate of convergence of our first and second-order Lagrangian
type schemes with the Dukowicz flux at ¢ = 1. The results for the other three fluxes are similar. We can clearly
see from Tables 1 and 2 that the first and second-order schemes achieve the designed order of accuracy, at least
in the L; norm. However, we also see only second-order accuracy in the results of our third-order scheme. This
is related to an accuracy degeneracy phenomenon of ENO schemes, originally discussed in [26] for Eulerian
formulated schemes. To solve this problem, we use the modified third-order ENO scheme in one-dimension
via the introduction of a biasing factor introduced in [28]. The effect of using this factor in the stencil deter-
mination procedure is to bias towards a linearly stable stencil in smooth regions. Table 3 shows the error re-
sults of the modified ENO scheme with the Dukowicz flux by using a factor of 2, according to the suggestion in
[28]. From this table, we can see the modified ENO scheme recovers the correct third-order accuracy. The fol-
lowing third-order non-oscillatory tests are all performed by the modified third-order ENO scheme, verifying
its essentially non-oscillatory property for problems with discontinuities.

Table 1

Errors of the first-order scheme on 1D meshes using N, initially uniform cells

N, Norm Density Order Momentum Order Energy Order

100 L 0.11E-1 - 0.15E—1 - 0.29E—1 -
Lo 0.34E—1 - 0.46E—1 - 0.78E—1 -

200 L 0.55E-2 0.93 0.77E-2 0.94 0.15E—1 0.93
L 0.19E—1 0.89 0.25E—1 0.86 0.42E—1 0.88

400 L 0.28E-2 0.97 0.39E-2 0.97 0.77E-2 0.96
Lo 0.97E-2 0.93 0.13E—1 0.92 0.22E—1 0.93

800 L 0.14E-2 0.98 0.20E—2 0.98 0.39E-2 0.98
L, 0.50E-2 0.96 0.69E-2 0.95 0.11E—1 0.96

Table 2

Errors of the second-order ENO scheme on 1D meshes using N, initially uniform cells

N, Norm Density Order Momentum Order Energy Order

100 L, 0.16E—2 - 0.22E-2 - 0.43E-2 -
L., 0.52E-2 - 0.10E—1 - 0.17E—1 -

200 L, 0.48E-3 1.76 0.61E-3 1.86 0.12E-2 1.80
L 0.25E-2 1.09 0.42E-2 1.25 0.72E-2 1.21

400 L 0.13E-3 1.93 0.16E-3 1.94 0.32E-3 1.95
L 0.93E-3 1.39 0.17E-2 1.32 0.28E-2 1.35

800 L 0.34E—4 1.90 0.42E—4 1.91 0.84E—4 1.91
L 0.35E-3 1.40 0.65E-3 1.38 0.11E-2 1.38

Table 3

Errors of the modified third-order ENO scheme on 1D meshes using N, initially uniform cells

Ny Norm Density Order Momentum Order Energy Order

100 L 0.52E—4 - 0.69E—4 - 0.13E-3 -
L 0.27E-3 - 0.47E-3 - 0.69E-3 -

200 L, 0.66E—5 2.99 0.88E—5 2.98 0.17E—4 2.99
L, 0.34E—4 2.96 0.60E—4 2.96 0.88E—4 2.96

400 L, 0.82E—6 3.00 0.11E-5 3.00 0.21E-5 3.00
Lo 0.43E-5 2.99 0.75E-5 2.99 0.11E—4 2.99

800 L, 0.10E-6 3.00 0.14E-6 3.00 0.26E—6 3.00

Lo 0.54E—6 3.00 0.94E—-6 3.00 0.14E-5 3.00
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3.2. Non-oscillatory tests

Example 3.1. (Lax problem). The first non-oscillatory test is the Riemann problem proposed by Lax. Its initial
condition is as follows

(pr,ur,p;) = (0.445,0.698,3.528), (pg,ur,pr) = (0.5,0,0.571).

Fig. 1 shows the results performed by the four fluxes introduced in the previous section with 100 initially uni-
form cells at ¢t = 1, respectively.

Comparing with the exact solution, we observe satisfactory non-oscillatory results in the pictures of Fig. 1
with the high resolution for the high order schemes for all these fluxes. If we observe closely, we can find that
the results with the Godunov flux and the Dukowicz flux have slightly better resolution than that with the
HLLC flux, which in turn has better resolution than that with the L-F flux. This is consistent with our
discussion in the previous section on the numerical viscosity of these fluxes.

Since most of the results of the four fluxes in the following tests are similar, we will only show the results of
the Dukowicz flux to save space unless their performance is distinctly different.

Example 3.2. (The Noh problem [24]). The computational domain is [0, 1]. The initial state of the fluid is uni-
form with (p,u,e) = (1, — 1,0). The shock is generated in a perfect ideal gas (y = 5/3) by bringing the cold gas
to rest at a rigid wall (x = 0). The analytic post shock density is 4 and the shock speed is 1/3. The left pictures
in Fig. 2 show the computational densities with 200 initially uniform cells against the exact density at ¢t = 0.6.
We observe the typical errors near the left boundary for all orders of accuracy. The shock resolution is better
for the higher order schemes.

Example 3.3. (Two interacting blast waves). The initial data are

10°, 0<x<0.1
p=1, u=1, p=<{102 01<x<09
10, 09<x<1.0.

The reflective boundary condition is applied at both x =0 and x = 1. In the right pictures of Fig. 2, the com-
puted densities with 400 initially uniform cells at the final time # = 0.038 are plotted against the reference “‘ex-
act” solution, which is computed using a fifth-order Eulerian WENO scheme [15] with 16000 grid points. We
can see the very satisfactory resolution in the results of high order scheme with relatively coarse grids which
demonstrates the advantage of the Lagrangian scheme. Meanwhile, we observe some overshoots in these fig-
ures and in some examples later. Apparently such overshoots are caused by the Lagrangian framework rather
than by the high order ENO reconstruction, since they are already present for the first-order scheme which
does not involve any ENO reconstruction.

Example 3.4. (Leblanc shock tube problem). In this extreme shock tube problem, the computational domain
is [0,9] filled with an ideal perfect gas with y = 5/3. The initial condition consists of large ratio jumps for the
energy and density and is given by the following data

(p,u,e) =(1,0,0.1), 0<x<3
(p,u,e) = (0.001,0,107), 3 <x<9.

It is very difficult for a scheme to obtain accurate positions of the contact and shock discontinuities in such a
severe test case [35]. The internal energy results of our schemes with the Dukowicz flux are shown in Fig. 3 (the
left pictures) with 1000 initially uniform cells at = 6. By comparing with the exact solution, we can see that
the shape and the position of the contact discontinuity and the shock can be maintained better when the high
order ENO schemes are used. In this test, the results performed by the different fluxes are visually different, so
we also show the results with the HLLC flux as an example in the right pictures of Fig. 3. From the figures, we
can observe that the overall resolution with the HLLC flux is better than that with the Dukowicz flux,
although the latter does resolve the contact more sharply than the former.
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Fig. 1. The density results of the Lax problem on a 100 initially uniform cells. Left: first-order; Middle: second-order; Right: third-order.
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(p,u,e) = (1 + esin(kx),0,1), x = —4

where € and k are the amplitude and wave number of the entropy wave. In our test, we take ¢ = 0.2 and k = 5.
The final time is # = 1.8. This problem is very suitable for testing the advantage of a high order scheme when
the solution contains both shocks and complex smooth region structures.

In Fig. 4 (the left pictures), the computed density by the Dukowicz flux with 400 cells is plotted against the
reference “exact” solution, which is obtained using the fifth-order Eulerian WENO scheme [15] with 2000 grid
points. We observe that the fine structure in the density profile makes the higher order schemes perform much
better than the lower order methods. For this example, we also show the density results with the HLLC flux in
right pictures in Fig. 4 for a comparison, which have much smaller spurious overshoots and undershoots than
the results with the Dukowicz flux.

4. High order ENO conservative Lagrangian type scheme-two space dimensions
4.1. The scheme in the Cartesian coordinates

The 2D spatial domain @ is discretized into M X N computational cells. 1,1/, 117> is a quadrilateral cell
constructed by the four vertices {(x;, Vi), (Xi+1,> Vit 1,)s (Xt 141> Vit 141)> (Xijir 15 Vigir1) |- Siv1/2,+172 18 denoted
to be the area of the cell I;y1/j11/p Withi=1,...,M, j=1,...,N. For a given cell I;;/> 1/, the location of
the cell center is denoted by (xit1/2,+1/2, Vi+1/2,+1/2).- The fluid velocity (u;;,v;;) is defined at the vertex of the
mesh. On the non-staggered mesh, all the variables except velocity are stored at the cell center of I;y1/2 11/ in
the form of cell averages. For example, the values of the cell averages for the cell [;1 /211> denoted by
Pit1/2,j+1/25 M1+1/2,]+1/2’ Mz+1/2/+1/2 and El+1/2_]+1/2 are defined as follows:

Pi+l/2,j+1/2:S—// pdxdy, M’;H/ZJH/ZZS;// M. dxdy,
i+1/2,j+1/2 Livi/241)2 i+1/2,j+1/2 Liv1j2j41)2

- 1 — 1
M?+1/2‘/+1/2 = S // M,dxdy, Eipj412 = S // Edxdy
i+1/2,j+1/2 Iipjii) i+1/2,j+1/2 Livij2e1)2

where p, M,, M, and E are the density, x-momentum, y-momentum and total energy, respectively.

4.1.1. Spatial discretization
The conservative semi-discrete scheme for the Egs. (2.1) and (2.4) has the following form on the 2D non-
staggered mesh

Pit1/2,j+1/281+1/241)2 (U, U
d M?+1/2,j+1/2Si+1/24j+1/2 ~ fA‘M (U_ U+)
) S Fdl = — ! " . (4.1)
dr Mi+l/2,j+l/2Si+1/2J+l/2 Olit12,741)2 A iy1/2j+1)2 fM (Un U, )

Eiv124128101/2,j+1)2 fe(U,, U)

Here U* = (p* Mf,M * E*) are the values of mass, x-momentum, y-momentum and total energy at two sides
of the boundary. U, = (p*, M, E*), where M are the left and right component values of the momentum
which is normal to the cell boundary, ie. MF = (M + Mi) n, where n = (n,,n,) in (2.4) is the outward unit
normal of the quadrilateral boundary 01,11/ 11/ f D, f M, f w, and f r are the numerical fluxes of mass, x-
momentum, y-momentum and total energy across the cell boundary, respectively. Here in the Lagrangian for-

mulation, we have
j‘D(UnaUn) = 0
S, (UrnUn) =pn,
fM),(Una U") :pny
fE(UnaUn) =pu,,
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where u,, = u - n is the normal velocity at the cell boundary.
Suppose the cell boundary 8/;1, j+1/> consists of M edges. The line integral in Eq. (4.1) is discretized by a
g-point Gaussian integration formula,

/ FdINZZka (G, )AL, (4.3)
Oliy12j41/2

where A/ is the length of the boundary edge m and G are the Gaussian quadrature points at the edge. Here
F(U,(Gy, 1)) is a numerical flux. For example the L-F flux is given by

SIFQU, (G 0) + F(U (G 1) — (U (Got) — U~ (G t) (44)
where o has the same meaning as that in the one-dimensional case.

We use the high order ENO reconstruction with Roe-type characteristic decomposition [33] to obtain U*
and U at the boundary and also use sufficiently high order quadrature to construct schemes up to the
expected high order spatial accuracy, for example the four-point Gauss—Lobatto integral formula is used,
which has GIZPI, GQZ%(Pl'f‘Pz)—%(PQ—Pl), G3:%(P1+P2)+\{—0§(P2—P1), G4:P2 and
W] = Wy = 11—2, Wy = w3 = 1—52 for the line with endpoints P; and P,. We have discussed in detail the high order
ENO reconstruction needed in our framework in [6], in the context of remapping. Therefore we do not
repeat the details here and refer the readers to [6]. We do mention here, however, that we have found in
numerical tests that the following WENO procedure is more robust than the ENO procedure for the
third-order case, hence this WENO procedure is used in the third-order numerical tests. In this procedure,
the coefficients of the reconstruction polynomial are chosen as the weighted averages of those determined by
the final three possible stencils introduced in [6]. To be more specific, we use density as an example. To
determine the coefficients {a,,,,m +n < 2} of the quadratic polynomial reconstruction function inside the

cell Iiv1/2,j+1/25

F(U,(Gi, 1) =

P12 (%,Y) = Z G (X = Xi1/2501/2)" (V= Vg1 j241/2)
m+n<2

suppose the coefficients of the reconstruction polynomials of the three candldate stencils are amn,z =1,2,3,
then we choose a,, =Y., wa , where w' is the weight chosen as w = (1/3, e L, [P)/e with
c= Z, VD e 2|amn| ). This crude WENO reconstruction, which does not increase the accuracy of each
candidate stencil but is very easy to compute, performs quite nicely in our numerical experiments.

The four numerical fluxes introduced in the one-dimensional case are also applied here. The form of these
fluxes in two-dimensions is similar to that in one-dimension except that the left and right values at the cell’s
boundary are chosen as U in two-dimensions rather than U™ in one-dimension.

4.1.2. The determination of the vertex velocity

Considering a vertex (i,j) shared by four edges which are given a serial number k = 1,2, 3,4, we define the
direction of each edge to be the direction of the incremental index i or j, for example the direction of the edge
with two endpoints (i — 1,/) and () is from (i — 1,) to (i,j). Along each edge k we can obtain the left value of
velocity (uf~,v¥7) = (M~ /p*~, M} /p*~) and the right velocity (u*, v**) = (MY*/pk*, MY* /p**) at this vertex
in the procedure of the flux computation since the vertex (i,j) is one of the Gaussian quadrature points for our
choice. We then split the left and right velocities into normal and tangential components along the edge k.
Denote (nt, }) to be the clockwise unit normal of the edge k and denote w/~ and w** to be their tangential
components and wf~ and wf" to be their normal components. Then the tangential velocity of the vertex
(i,7) along the edge k is defined as

1
wh = E(wf’ +w), k=1,2,3,4. (4.5)
As to the normal velocity, for the Godunov and the Dukowicz fluxes, we obtain it by the Riemann solver here

and for the L-F flux and the HLLC flux, we get it by the Roe average of the normal velocities from its two
sides as in the one-dimensional case, that is
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/— ER
w, \;v—i \/p—+w ; k= 1a2a3a4a (46)
P

where p* are the densities from the left and right cells of the edge k, respectively.
Thus by the formulas (4.5) and (4.6), we can get four x-velocities and y-velocities at the vertex (i,j) which
have the following form,

wh=whnf —whnl, wh=whal + Wik, k=1,2,34. (4.7
Finally, the velocity at the vertex (,j) is obtained as follows,
1 1
U = Z(W —|—w +w +w) v,—yj:Z(w;—ﬁ—w}z,—i—w;—l—w‘y‘). (4.8)

4.1.3. Time discretization
The time discretization is also similar to that in one-dimension. We only list the first-order Lagrangian type
scheme as a representative here to save space

—n+1 n n
pt+1/2/+1/2St+1/21+1/2 pi+l/2,j+l/2Si+1/2j+1/2

M St = MLy S M
i+1/2,j+1/2°i+1/2,j+1/2 1/2+1/20+1/2,j+1/2 | —Atnz Zw/‘ 2 (G, 1)) AI" (4.9)
Ayt Aqyn 7 - ) 9 .
Ml+1/2/+1/2SI+1/2/+1/2 Mf+1/2,_/+1/2 i1+1/2,j+1/2 m=1 k=1
Ez+1/2 /+1/2Sz+1/2 J+1/2 E;'+1/2,]+1/2S?+1/2,j+1/2

where S}, ./, and st 121172 are the areas of Cell Jiy1/2j+12 at the n-th and (n + 1)th time steps, respec-
tively. Sf’jll/z Jj+1,2 1s determined by the following simple formulas,

n+1 n+l __ .n n n
Xy = u A g, Vg = v AT+,

Sipt =5 [0 = X055 = Vi) + (5 = ) 01 = Vi) (4.10)
i=1,....M, j=1,...,N
The time step A¢” is chosen as follows
(Al:‘l+l/2,j+1/2/ctr"+1/2J'+1/2)7 (4.11)

where AL ./, Is the shortest edge length of the cell Ji1/2 /4172, and ¢}y 5 11y 1.s the sound speed within this
cell. The Courant number / in the following tests is set to be 0.5 unless otherwise stated.

Af" = min,_; =1,

4.2. The scheme in the cylindrical coordinates

We seek to study the flow governed by the axisymmetric compressible Euler equations which have the fol-
lowing integral form in the Lagrangian formulation,

%ff!)(r) prdxdr =0

i J Jou Merdxdr = — [ pn.rdl

% ffg(z) M, rdxdr = —fr(t)pnrrdl + ffg(t)(erpu,z,)dxdr (4.12)
%ffﬂ(t) Myrdxdr = _fo(z) pugu,dxdr

%ffﬂ(t) Erdxdr = —fr(t)punrdl,

where p is the density, p is the pressure, M, M,, My are the momentum components in the axial, radial and
azimuthal directions, and u,,u,, uy are the velocity components in the above mentioned directions. n = (n,,n,)
is the unit outward normal to the boundary I'(z) in the x — r coordinates. u, = (u,,u,) - n is the normal velocity.
E is the total energy.
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_The values o_f the cell averages for the cell I;11/211/2, denoted by piii/2j+1/2, ]\7;;1/2,#1/2, M;"H/z,/ﬂ/zs
Mf.’ﬂ/z_ﬂl/z and E;.1/2.12, are defined as follows

_ 1 — 1
Pii/ajr1/a = // prdxdr, M7 00 = 7R // M rdxdr,
i+1/2,j+1/2 Liv1j2j11)2 i+1/2,j+1/2 Tiv1j2j41)2

. 1 — 1
iH+1/2j+1/2 = _ // M, rdxdr, Mg = Vo // M prdxdr,
i+1/2,j+1/2 Ly i+1/2,j+1/2 Lis1j2,41)2

_ 1
Eijipjp1p=—5—— // Erdxdr.
' Vf+1/2~j+1/2 Liv1j2j41)2

where Vi = [ [, e rdxdr is the volume of the cell I 1/ 11/
i+1/2,)

The conservative semi-discrete scheme for the Eq. (4.12) has the following form

Pitr1/2+172V ix1/2,51)2 0
q A?xi+l/2‘j+l/2Vi+l/2,j+l/2 ~ 0
3 | MmrsVipmpe | = —/N ~ Fdi+ S Jiyiisnp P+ pu)dxdr (4.13)
M1 2V i e 2 S — f‘/}1+1/2‘/+1/2 pugu,dxdr
Eiv12012V 125512 0,
where
/(U U;)
fM*(U;’ U:)
/ Fd/ = / Fur(U;, U | dl, (4.14)
e T (U, )
Je(U,,U;)
and
/oU,U,) = 0,
fuw (U, U,) = pnr
fM’(Uann) = pnr (4.15)
]A(M“(Uann) =0
fE(Un,Un) = pu,r.

The calculation of the first term on the right-hand side of Eq. (4.13) is similar to that in the Cartesian coor-
dinates introduced in the above subsection. The calculation of the second term is performed by a suitable
Gaussian integral in the corresponding cell to guarantee its high order accurate approximation.
We use the same method as that used in the Cartesian coordinates to decide the velocity components (u,, u,) at
the vertex in the x and r directions (since the grid moves just in the x — r coordinates, we only need to know u., u,.).
We also use the Runge-Kutta method to discretize the time derivatives in (4.13). The method to calculate
the time step is the same as that in the Cartesian coordinates.

5. Numerical results in two space dimensions

It is much more difficult to simulate a 2D problem than to simulate a 1D one in the Lagrangian framework,
mainly because of the mesh distortion in multi-dimensions. In this section, although we have run most exam-
ples using the first, second and third-order schemes with the Godunov flux, the Dukowicz flux, the HLLC flux
and the L-F flux, respectively, we will only show the results performed by the Dukowicz flux as representatives
unless the results of the different fluxes are obviously different.
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5.1. Numerical results in the Cartesian coordinates

5.1.1. Accuracy test

In the Cartesian coordinates, we choose the two-dimensional vortex evolution problem [30] as our accuracy
test function. The vortex problem is described as follows: the mean flowis p =1, p =1 and (1, v) = (1, 1) (diag-
onal flow). We add to this mean flow an isentropic vortex perturbations in (u,v) and the temperature 7= p/p,
no perturbation in the entropy S = p/p’.

y 112
(du, 0v) = ie““*’z)(—y,x), oT = _“w—;ﬁeeﬂﬂ), 85 =0
where (=3,%) = (x — 5,y — 5), ¥ = x> + 7, and the vortex strength is € = 5.

The computational domain is taken as [0,10]x [0, 10], and periodic boundary conditions are used.

The convergence results for the first, second and third-order ENO Lagrangian type schemes at t =1 are
listed in Tables 46, respectively. In Tables 4 and 5, we can see the desired first and second-order accuracy.
However in Table 6 we cannot observe the expected third-order accuracy. Further exploration indicates that
this accuracy degeneracy cannot be cured by the modified ENO scheme via the introduction of a biasing factor

Table 4
Errors of the first-order scheme on 2D Cartesian coordinates for the vortex problem using N, X N,, initially uniform mesh cells
Ny Norm Density Order Momentum Order Energy Order
20 L, 0.83E—2 - 0.23E-1 - 0.41E—1 -
L 0.73E—1 - 0.19E+0 - 0.35E+0 -
40 L, 0.52E—2 0.69 0.13E—1 0.84 0.24E—1 0.76
Lo 0.50E—1 0.56 0.10E+0 0.89 0.20E+0 0.84
80 L, 0.29E—2 0.85 0.69E—2 0.91 0.13E—1 0.90
Lo 0.26E—1 0.91 0.53E-1 0.96 0.10E+0 0.93
160 L, 0.15E-2 0.93 0.36E-2 0.95 0.66E—2 0.95
L 0.14E—1 0.97 0.27E—1 0.98 0.53E—1 0.95
Table 5
Errors of the second-order ENO scheme on 2D Cartesian coordinates for the vortex problem using N, x N, initially uniform mesh cells
N, Norm Density Order Momentum Order Energy Order
20 L, 0.58E—2 - 0.13E—1 - 0.23E—1
Lo 091E—1 - 0.15E+0 - 0.35E+0
40 L, 0.16E-2 1.85 0.40E—-2 1.74 0.72E-2 1.71
L 0.28E—1 1.72 0.48E—1 1.66 0.12E+0 1.52
80 L, 0.51E-3 1.65 0.12E-2 1.77 0.21E-2 1.79
Lo 0.85E—2 1.71 0.18E—1 1.44 0.39E—1 1.63
160 L 0.16E-3 1.70 0.33E-3 1.81 0.59E-3 1.82
L, 0.36E—2 1.26 0.67E—-2 1.41 0.13E—1 1.57
Table 6
Errors of the third-order ENO scheme on 2D Cartesian coordinates for the vortex problem using N, x N, initially uniform mesh cells
N Norm Density Order Momentum Order Energy Order
20 L 0.31E-2 - 0.57E-2 - 0.11E—1
Lo 0.30E—1 - 0.58E—1 - 0.18E+0 -
40 L, 0.77E-3 2.01 0.14E-2 2.03 0.28E-2 2.04
L, 0.97E-2 1.64 0.20E—1 1.51 0.60E—1 1.58
80 L, 0.19E-3 2.04 0.33E-3 2.08 0.66E-3 2.06
Lo 0.25E-2 1.98 0.49E-2 2.07 0.13E—1 2.24
160 L, 0.47E—4 1.99 0.81E—4 2.01 0.16E-3 2.02

Lo 0.81E-3 1.59 0.13E-2 1.89 0.34E-2 1.88
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in the stencil-choosing process. It represents a fundamental problem in our way of formulating the Lagrangian
schemes. In a Lagrangian simulation, each cell represents a material particle, thus its shape may change with
the movement of fluid, that means the cell with a quadrilateral shape initially may not keep its shape as a
quadrilateral at a later time. It usually becomes a curved quadrilateral, while during our Lagrangian simula-
tion the mesh is always supposed to be quadrilateral which is determined by the movement of its four vertices.
This approximation of the mesh will bring second-order error into the scheme. Thus for a Lagrangian scheme
in multi-dimensions, it can be at most second-order accurate if curved meshes are not used. We will not
explore curved meshes in this paper, as it would require a new reconstruction procedure based on such cells
with curved boundaries. Our “‘third-order” scheme is therefore only second-order accurate. However, in the
following examples, we indeed often find better resolution in the fluid field by the third-order scheme com-
pared with that obtained by the lower order schemes, despite its formal second-order accuracy. We also
observe third-order accuracy in some test problems, e.g. Table 9 in Section 5.2.1, when the mesh does not lose
its quadrilateral shape.

5.1.2. Non-oscillatory tests

Example 5.1. (The Saltzman problem [10]). This is a well known difficult test case to validate the robustness of
a Lagrangian scheme when the mesh is not aligned with the fluid flow. The problem consists of a rectangular
box whose left end is a piston. The piston moves into the box with a co